Oxidative stress after burn injuries leads to systemic capillary leakage and leukocyte activation. This study evaluates whether antioxidative treatment with high-dose vitamin C leads to burn edema reduction and prevention of leukocyte activation after burn plasma transfer. Donor rats underwent a burn (n = 7; 100 degrees C water, 12 seconds, 30% body surface area) or sham burn (37 degrees C water; n = 2) procedure and were killed after 4 hours for plasma harvest. This plasma was administered to study rats (continuous infusion). Rats were randomized to four groups (n = 8 each; burn plasma alone [BP]; burn plasma/vitamin C-bolus 66 mg/kg and maintenance dose 33 mg/kg/hr [VC66]; burn plasma/vitamin C-bolus 33 mg/kg and maintenance dose 17.5 mg/kg/hr [VC33]; and sham burn plasma [SB]). Intravital fluorescence microscopy in the mesentery was performed at 0, 60, and 120 minutes for microhemodynamic parameters, leukocyte adherence, and fluorescein isothiocyanate-albumin extravasation. No differences were observed in microhemodynamics at any time. Burn plasma induced capillary leakage, which was significantly higher compared with sham burn controls (P < .001). VC66 treatment reduced microvascular barrier dysfunction to sham burn levels, whereas VC33 had no significant effect. Leukocyte sticking increased after burn plasma infusion, which was not found for sham burn. Vitamin C treatment did not influence leukocyte activation (P > .05). Burn plasma transfer leads to systemic capillary leakage. High-dose vitamin C treatment (bolus 66 mg/kg and maintenance dose 33 mg/kg/hr) reduces endothelial damage to sham burn levels, whereas half the dose is inefficient. Leukocyte activation is not influenced by antioxidative treatment. Therefore, capillary leakage seems to be independent from leukocyte-endothelial interactions after burn plasma transfer. High-dose vitamin C should be considered for parenteral treatment in every burn patient.
Abstract. Transforming growth factor-ß1 (TGF-ß1) has been identified as an important regulator of wound healing. Recent developments in molecular therapy offer exciting prospects for the modulation of wound healing, specifically those targeting TGF-ß1. The purpose of this study was to analyze the effect of TGF-ß1 targeting on the expression of matrix metalloproteinases (MMPs) in fibroblasts cultured from earlobe keloids. The expression of MMP-2 and -9 in tissue samples from keloids was investigated by immunohistochemistry. The effect of TGF-ß1 targeting using antisense oligonucleotides on the expression of MMPs in keloid-derived fibroblasts was analysed by ELISA and multiplex RT-PCR. Immunohistochemical studies demonstrated an increased expression of MMP protein in tissue samples from keloids compared to normal human skin. Antisense TGF-ß1 oligonucleotide treatment significantly downregulated MMP-9 secretion in vitro. In conclusion, TGF-ß1 antisense oligonucleotide technology may be a potential therapeutic option for the inhibition of proteolytic tissue destruction in keloids.
Malignant melanoma of the uvea is the most common primary malignant tumor in the eye. We aimed to analyze GNAQ and GNA11 mutations in uveal melanomas using formalin-fixed, paraffin-embedded material and correlate the results with clinicopathological parameters. Tumor tissue was microdissected followed by amplification of GNAQ exon 4 and 5, GNA11 exon 4 and 5, and finally analyzed by Sanger sequencing. A total of 64.4 GNA11/GNAQ mutations, including ten yet unreported, were found. Two cases showed multiple mutations. Overall survival was significantly shorter in the uveal melanoma cohort with GNAQ exon 5 mutation. In concordance with previous studies, high frequencies of mutations in GNAQ or GNA11 were detected. Interestingly, in about 20% of UM, not yet reported mutations in GNAQ or GNA11 were seen. Rarely, uveal melanoma may harbor double mutations in GNAQ and/or GNA11. Recent data imply, that implementation of GNAQ/GNA11 mutation analysis in routine diagnostic procedures might be helpful for future therapeutic decisions.
Our results support the notion, that the Suprathel-acetic acid matrix has an excellent bactericidal effect and therefore seems to be suitable as a local antiseptic agent in the treatment of burn wounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.