Experimental results are presented of the first successful gyrotron backward wave oscillator (gyro-BWO) with continuous frequency tuning near the low-terahertz region. A helically corrugated interaction region was used to allow efficient interaction over a wide frequency band at the second harmonic of the electron cyclotron frequency without parasitic output. The gyro-BWO generated a maximum output power of 12 kW when driven by a 40 kV, 1.5 A, annular-shaped large-orbit electron beam and achieved a frequency tuning band of 88-102.5 GHz by adjusting the cavity magnetic field. The performance of the gyro-BWO is consistent with 3D particle-in-cell numerical simulations.
First bandwidth measurements of a novel gyrotron amplifier are presented. The coupling between the second harmonic cyclotron mode of a gyrating electron beam and the radiation field occurred in the region of near infinite phase velocity over a broad bandwidth by using a cylindrical waveguide with a helical corrugation on its internal surface. With a beam energy of 185 keV, the amplifier achieved a maximum output power of 1.1 MW, saturated gain of 37 dB, linear gain of 47 dB, saturated bandwidth of 8.4 to 10.4 GHz ( 21% relative bandwidth), and an efficiency of 29%, in good agreement with theory.
This paper presents for the generation of a small size high current density pseudospark (PS) electron beam for a high frequency (0.2 THz) Backward Wave Oscillator (BWO) through a Doppler up-shift of the plasma frequency. An electron beam ∼1 mm diameter carrying a current of up to 10 A and current density of 108 A m−2, with a sweeping voltage of 42 to 25 kV and pulse duration of 25 ns, was generated from the PS discharge. This beam propagated through the rippled-wall slow wave structure of a BWO beam-wave interaction region in a plasma environment without the need for a guiding magnetic field. Plasma wave assisted beam-wave interaction resulted in broadband output over a frequency range of 186–202 GHz with a maximum power of 20 W.
Helically corrugated waveguide has been used in various applications such as gyro-backward wave oscillators, gyro-traveling wave amplifier and microwave pulse compressor. A fast prediction of the dispersion characteristic of the operating eigenwave is very important when designing a helically corrugated waveguide. In this paper, multi-mode coupling wave equations were developed based on the perturbation method. This method was then used to analyze a five-fold helically corrugated waveguide used for X-band microwave compression. The calculated result from this analysis was found to be in excellent agreement with the results from numerical simulation using CST Microwave Studio and vector network analyzer measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.