In the present study, a method for classifying the different ictal stages in electroencephalogram (EEG) signals is proposed. The main symptoms of epilepsy are indicated by ictal activities, which trigger widespread neurological disorders other than stroke and thus affect the world population. In this work, a novel ictal classification method that combines the spectral and temporal features of twin components in Hilbert–Huang transform is proposed. Spectral features of instantaneous amplitude (IA) function are obtained based on the power spectral density of autoregressive (AR) modeling. Here four different cases of ictal activities of EEG signal are classified. In each case first and second intrinsic mode function of Hilbert–Huang transform are tabulated. The power spectral density of AR(6) and AR(10) model are done for IA1 and IA2 components of each case. Temporal features of either instantaneous frequency (IF) function or IA are computed. The feature vectors are tested in a well-known database of different classes in interictal, ictal, and normal activities of EEG signals. The discriminating power of each vector is evaluated through one-way analysis of variance, and the classification results are verified using an artificial neural network (ANN) classifier. The performance of the classifier was assessed in term of sensitivity, specificity, and total classification accuracy. The spectral features of the AR(10) of IA and the temporal features of IA yielded 100% accuracy, 100% sensitivity, and 100% specificity in the ictal classification. By contrast, these features obtained only 83.33% of the total classification accuracy in ictal and interictal EEG signal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.