The radiation hardness of silicon carbide with respect to electron and proton irradiation and its dependence on the irradiation temperature are analyzed. It is shown that the main mechanism of SiC compensation is the formation of deep acceptor levels. With increasing the irradiation temperature, the probability of the formation of these centers decreases, and they are partly annealed out. As a result, the carrier removal rate in SiC becomes ~6 orders of magnitude lower in the case of irradiation at 500 °C. Once again, this proves that silicon carbide is promising as a material for high-temperature electronics devices.
In this paper, the features of radiation compensation of wide-gap semiconductors are discussed, considering the case study of silicon carbide. Two classical methods of concentration determination are compared and analyzed: capacitance-voltage (C–V) and current-voltage (I–V) characteristics. The dependence of the base resistance in high-voltage 4H-SiC Schottky diodes on the dose of irradiation by electrons and protons is experimentally traced in the range of eight orders of magnitude. It is demonstrated that the dependence of the carrier concentration on the irradiation dose can be determined unambiguously and reliably in a very wide range of compensation levels, based on the results of measuring the I–V characteristics. It is shown that the determination of the carrier removal rate using the I–V characteristics is more correct than using the C–V characteristics, especially in the case of high radiation doses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.