The objective of this experiment was to evaluate the effect of supplementing a metabolizable protein (MP)-deficient diet with rumen-protected (RP) Lys, Met, and specifically His on dairy cow performance. The experiment was conducted for 12 wk with 48 Holstein cows. Following a 2-wk covariate period, cows were blocked by DIM and milk yield and randomly assigned to 1 of 4 diets, based on corn silage and alfalfa haylage: control, MP-adequate diet (ADMP; MP balance: +9 g/d); MP-deficient diet (DMP; MP balance: -317 g/d); DMP supplemented with RPLys (AminoShure-L, Balchem Corp., New Hampton, NY) and RPMet (Mepron; Evonik Industries AG, Hanau, Germany; DMPLM); and DMPLM supplemented with an experimental RPHis preparation (DMPLMH). The analyzed crude protein content of the ADMP and DMP diets was 15.7 and 13.5 to 13.6%, respectively. The apparent total-tract digestibility of all measured nutrients, plasma urea-N, and urinary N excretion were decreased by the DMP diets compared with ADMP. Milk N secretion as a proportion of N intake was greater for the DMP diets compared with ADMP. Compared with ADMP, dry matter intake (DMI) tended to be lower for DMP, but was similar for DMPLM and DMPLMH (24.5, 23.0, 23.7, and 24.3 kg/d, respectively). Milk yield was decreased by DMP (35.2 kg/d), but was similar to ADMP (38.8 kg/d) for DMPLM and DMPLMH (36.9 and 38.5kg/d, respectively), paralleling the trend in DMI. The National Research Council 2001model underpredicted milk yield of the DMP cows by an average (±SE) of 10.3 ± 0.75 kg/d. Milk fat and true protein content did not differ among treatments, but milk protein yield was increased by DMPLM and DMPLMH compared with DMP and was not different from ADMP. Plasma essential amino acids (AA), Lys, and His were lower for DMP compared with ADMP. Supplementation of the DMP diets with RP AA increased plasma Lys, Met, and His. In conclusion, MP deficiency, approximately 15% below the National Research Council requirements from 2001, decreased DMI and milk yield in dairy cows. Supplementation of the MP-deficient diet with RPLys and RPMet diminished the difference in DMI and milk yield compared with ADMP and additional supplementation with RPHis eliminated it. As total-tract fiber digestibility was decreased with the DMP diets, but DMI tended to increase with RP AA supplementation, we propose that, similar to monogastric species, AA play a role in DMI regulation in dairy cows. Our data implicate His as a limiting AA in high-producing dairy cows fed corn silage- and alfalfa haylage-based diets, deficient in MP. The MP-deficient diets clearly increased milk N efficiency and decreased dramatically urinary N losses.
The objectives of this experiment were to investigate the effects of lauric (LA) and myristic (MA) acids on ruminal fermentation, production, and milk fatty acid (FA) profile in lactating dairy cows and to identify the FA responsible for the methanogen-suppressing effect of coconut oil. The experiment was conducted as a replicated 3×3 Latin square. Six ruminally cannulated cows (95±26.4 DIM) were subjected to the following treatments: 240 g/cow per day each of stearic acid (SA, control), LA, or MA. Experimental periods were 28 d and cows were refaunated between periods. Lauric acid reduced protozoal counts in the rumen by 96%, as well as acetate, total VFA, and microbial N outflow from the rumen, compared with SA and MA. Ruminal methane production was not affected by treatment. Dry matter intake was reduced 35% by LA compared with SA and MA, which resulted in decreased milk yield. Milk fat content also was depressed by LA compared with SA and MA. Treatment had no effect on milk protein content. All treatments increased milk concentration of the respective treatment FA. Concentration of C12:0 was more than doubled by LA, and C14:0 was increased (45%) by MA compared with SA. Concentration of milk FA
This experiment investigated the effects of dietary supplementation of Origanum vulgare L. leaf material (OR) on rumen fermentation, production, and milk fatty acid composition in dairy cows. The experimental design was a replicated 4 × 4 Latin square with 8 rumen-cannulated Holstein cows and 20-d experimental periods. Treatments were control (no OR supplementation), 250 g/cow per day OR (LOR), 500 g/d OR (MOR), and 750 g/d OR (HOR). Oregano supplementation had no effect on rumen pH, volatile fatty acid concentrations, and estimated microbial protein synthesis, but decreased ammonia concentration and linearly decreased methane production per unit of dry matter intake (DMI) compared with the unsupplemented control: 18.2, 16.5, 11.7, and 13.6g of methane/kg of DMI, respectively. Proportions of rumen bacterial, methanogen, and fungal populations were not affected by treatment. Treatment had no effect on total-tract apparent digestibility of dietary nutrients, except neutral detergent fiber digestibility was slightly decreased by all OR treatments compared with the control. Urinary N losses and manure odor were not affected by OR, except the proportion of urinary urea N in the total excreted urine N tended to be decreased compared with the control. Oregano linearly decreased DMI (28.3, 28.3, 27.5, and 26.7 kg/d for control, LOR, MOR, and HOR, respectively). Milk yield was not affected by treatment: 43.4, 45.2, 44.1, and 43.4 kg/d, respectively. Feed efficiency was linearly increased with OR supplementation and was greater than the control (1.46, 1.59, 1.60, and 1.63 kg/kg, respectively). Milk composition was unaffected by OR, except milk urea-N concentration was decreased. Milk fatty acid composition was not affected by treatment. In this short-term study, OR fed at 250 to 750 g/d decreased rumen methane production in dairy cows within 8h after feeding, but the effect over a 24-h feeding cycle has not been determined. Supplementation of the diet with OR linearly decreased DMI and increased feed efficiency. Oregano had no effects on milk fatty acid composition.
Two experiments were conducted with the objective of investigating the effects of rumen-protected methionine (RPMet) supplementation of metabolizable protein (MP)-deficient or MP-adequate but Met-deficient diets on dairy cow performance. Experiment (Exp.) 1 utilized 36 Holstein dairy cows blocked in 12 blocks of 3 cows each. Cows within block were assigned to one of the following dietary treatments: (1) MP-adequate diet [AMP; positive MP balance according to the National Research Council (2001) dairy model]; (2) an MP-deficient diet supplemented with 100g of rumen-protected Lys (RPLys)/cow per day (DMPL); and (3) DMPL supplemented with 24 g of RPMet/cow per day (DMPLM). Experiment 2 utilized 120 Holstein cows assigned to 6 pens of 20 cows each. Pens (3 per treatment) were assigned to one of the following dietary treatments: (1) AMP diet supplemented with 76 g of RPLys/cow per day (AMPL); and (2) AMPL (74 g of RPLys/cow per day) supplemented with 24 g of RPMet/cow per day (AMPLM). Each experiment lasted for 10 wk (2-wk adaptation and 8-wk experimental periods) following a 2-wk covariate period (i.e., a total of 12 wk). In Exp. 1, the MP-deficient diets decreased apparent total-tract nutrient digestibility but had no statistical effect on dry matter intake (DMI), milk yield, or milk fat percentage and yield. Compared with AMP, DMPL decreased milk protein content; both DMPL and DMPLM diets decreased milk protein yield. Urinary N losses and milk urea-N concentration were decreased by the MP-deficient diets compared with AMP. The ammonia emitting potential of manure from the MP-deficient diets was decreased by about 37% compared with that of AMP manure. Plasma Lys and Met concentrations were not affected by treatment, but concentrations of His, Thr, and Val were lower for the MP-deficient diets compared with AMP. In Exp. 2, the AMPLM diet had lower milk yield than AMPL due to numerically lower DMI; no other effects were observed in Exp. 2. In conclusion, feeding MP-deficient diets supplemented with RPLys and RPMet did not statistically decrease milk yield in dairy cows in Exp. 1. However, without RPMet supplementation, milk protein content was decreased compared with the MP-adequate diet. Other amino acids, possibly His, may limit milk production in MP-deficient, corn or corn silage-based diets. A summary of 97 individual cow data from trials in which MP-deficient diets were fed suggested the National Research Council (2001) model under-predicts milk yield in cows fed MP-deficient diets (MP balance of -20 to -666 g/d) in a linear manner: milk yield under-prediction [National Research Council (2001) MP-allowable milk yield, kg/d - actual milk yield, kg/d] = 0.0991 (±0.0905) + 0.0230 (±0.0003) × MP balance, g/d (R(2)=0.99).
A lactating cow trial was conducted to study the effects of dietary addition of oregano leaf material (Origanum vulgare L.; OV; 0, control vs. 500 g/d) on ruminal fermentation, methane production, total tract digestibility, manure gas emissions, N metabolism, organoleptic characteristics of milk, and dairy cow performance. Eight primiparous and multiparous Holstein cows (6 of which were ruminally cannulated) were used in a crossover design trial with two 21-d periods. Cows were fed once daily. The OV material was top-dressed and mixed with a portion of the total mixed ration. Cows averaged 80 ± 12.5 d in milk at the beginning of the trial. Rumen pH, concentration of total and individual volatile fatty acids, microbial protein outflow, and microbial profiles were not affected by treatment. Ruminal ammonia-N concentration was increased by OV compared with the control (5.3 vs. 4.3mM). Rumen methane production, which was measured only within 8h after feeding, was decreased by OV. Intake of dry matter (average of 26.6 ± 0.83 kg/d) and apparent total tract digestibly of nutrients did not differ between treatments. Average milk yield, milk protein, lactose, and milk urea nitrogen concentrations were unaffected by treatment. Milk fat content was increased and 3.5% fat-corrected milk yield tended to be increased by OV, compared with the control (3.29 vs. 3.12% and 42.4 vs. 41.0 kg/d, respectively). Fat-corrected (3.5%) milk feed efficiency and milk net energy for lactation (NE(L)) efficiency (milk NE(L) ÷ NE(L) intake) were increased by OV compared with the control (1.64 vs. 1.54 kg/kg and 68.0 vs. 64.4%, respectively). Milk sensory parameters were not affected by treatment. Urinary and fecal N losses, and manure ammonia and methane emissions were unaffected by treatment. Under the current experimental conditions, supplementation of dairy cow diets with 500 g/d of OV increased milk fat concentration, feed and milk NE(L) efficiencies, and tended to increase 3.5% fat-corrected milk yield. The sizable decrease in rumen methane production with the OV supplementation occurred within 8h after feeding and has to be interpreted with caution due to the large within- and between-animal variability in methane emission estimates. The OV was introduced into the rumen as a pulse dose at the time of feeding, thus most likely having larger effect on methane production during the period when methane data were collected. It is unlikely that methane production will be affected to the same extent throughout the entire feeding cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.