A comparative investigation of the physical, chemical and biological properties of micro‐arc deposited calcium phosphate coatings on titanium and zirconium‐niobium substrates was performed. Calcium phosphate coatings on titanium have a higher surface density, porosity and pore size, and a more homogeneous surface topography. Under the same conditions, calcium phosphate coatings on zirconium‐niobium have a relief topography, but their surface density, porosity and pore size were all smaller. X‐ray diffraction of the coatings showed that the coatings on titanium were X‐ray amorphous whereas the coatings on zirconium‐niobium consisted of a mixture of crystalline CaZr4(PO4)6, ZrP2O7, and ZrO2. These differences are due to different electrical and thermophysical characteristics of substrates and passivating films on their surfaces. The coatings were shown to be biocompatible by in‐vitro cell culture experiments.
A comparative investigation of microstructure, mechanical and biological properties for zirconium alloyed with niobium in coarse-grained and ultra-fine grained states is presented. The temperature and deformation regimes of multi-stage abc-pressing resulted in ultra-fine grained states with an average size of the structural elements in the range of 0.28 -0.55 lm, depending on the accumulated strain during pressing. The increase of the accumulated strain at each stage of pressing increased the uniformity of the structure. The microhardness increased by 50% with increased accumulated strain during the severe plastic deformation. Between the microhardness and the average size of the structural elements, a linear dependence was found, indicating a Hall-Petch relationship. The alloy had a good biocompatibility as shown by an MTT test with osteoblasts (MG-63 cell line). The good mechanical properties (microhardness) of zirconium alloyed with niobium in the ultra-fine grained state make it suitable for medical applications, e. g. as implant material.Keywords: plastic deformation / microstructure / mechanical properties / biomaterials / alloys / Eine vergleichende Untersuchung der Mikrostruktur sowie der mechanischen und biologischen Eigenschaften einer Zirkonium-Niob-Legierung im grobkörnigen und ultrafeinkörnigen Zustand werden vorgestellt. Durch kombinierte Wärmebehandlung und Deformation beim mehrstufigen ABC-Pressen wurde ein ultrafeinkörniges Material mit durchschnittlichen Abmessungen der Strukturbestandteile von 0,28 -0,55 lm erhalten, je nach akkumulierter mechanischer Spannung. Die Zunahme der akkumulierten mechanischen Spannung bei jedem Pressschritt erhöhte die Einheitlichkeit der Struktur. Die Mikrohärte nahm um 50% mit zunehmender akkumulierter Pressspannung zu. Ein linearer Zusammenhang zwischen der Mikrohärte und der Größe der Strukturelemente spricht für eine Hall-Petch-Beziehung. Die gute biologische Verträglichkeit wurde durch einen MTT-Test mit Osteoblasten (MG-63 Zelllinie) gezeigt. Die guten mechanischen Eigenschaften (insbesondere die Mikrohärte) sprechen für eine gute Anwendbarkeit der Zirkonium-Niob-Legierung im ultrafeinkörnigen Zustand, z.B. als Implantatmaterial.Schlüsselwörter: Plastische Verformung / Mikrostruktur / mechanische Eigenschaften / Biomaterialien /
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.