The results of studying the efficiency of the laser-acoustic method of ultrasonic testing in determination of the degree of polymerization of the matrix of polymer composite material (PCM) are presented. We have studied the PCM samples used for manufacturing integrated structures. It is shown that excessive degree of polymerization of the preformed blanks leads to a decrease in the strength of connection of the structural elements and precludes obtaining the desired shape and geometric dimensions of the product. We developed fundamentally new diagnostic parameters, which are characterized by high reliability and accuracy of determination. To forecast sample curing regimes with given values of the degree of transformation, the reaction kinetics was analyzed using differential scanning calorimetry Experimental results used for calculation of the kinetic parameters were obtained on a thermoanalytical complex DSC 1 (Switzerland). The kinetic parameters of polymerization and degree of binder curing in plastics were determined by the thermal effect of the reaction. It is shown that when determining the degree of polymerization of a PCM matrix by an ultrasonic method (laser-acoustic method of exciting ultrasonic vibrations), the product of attenuation of the bottom signal of longitudinal ultrasonic vibrations by the signal round-trip time and energy of the structural noise (thus taking into account the porosity of the material), can be used as reliable parameters of diagnostics. The proposed method provides higher accuracy compared to other methods used for control of the degree of polymerization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.