Abstract. The southern coastal area of Korea has often been damaged by storm surges and waves due to the repeated approach of strong typhoons every year. The integrated model system is applied to simulate typhoon-induced winds, storm surges, and surface waves in this region during Typhoon Sanba in 2012. The TC96 planetary boundary layer wind model is used for atmospheric forcing and is modified to incorporate the effect of the land's roughness on the typhoon wind. Numerical experiments are carried out to investigate the effects of land-dissipated wind on storm surges and waves using the three-dimensional, unstructured grid, Finite Volume Coastal Ocean Model (FVCOM), which includes integrated storm surge and wave models with highly refined grid resolutions along the coastal region of complex geometry and topography. Compared to the measured data, the numerical models have successfully simulated storm winds, surges, and waves. Better agreement between the simulated and measured storm winds has been found when considering the effect of wind dissipation by land roughness. In addition, this modified wind force leads to clearly improved results in storm surge simulations, whereas the wave results have shown only slight improvement. The study results indicate that the effect of land dissipation on wind force plays a significant role in the improvement of water level modeling inside coastal areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.