AIM OF STUDY Was to compare the dynamics of engraftment of skin micrographs in a burn wound when using protectors from an allodermal graft and from a hydrogel coating.MATERIAL AND METHODS The experimental study was conducted on 18 rats with a scab formed 3 days after modeling a deep burn with an area of 20% of the body surface. Partial fascial necrectomy was performed: two rounded sections of the sling with a diameter of 25 mm were excised. 6 automicrographs of skin 4x4 mm, 0.3 mm thick, were applied to each surface freed from the scab. In each animal, micrographs on one of the wounds were covered with a hydrogel protector, on the other with an allodermotransplant from another animal of the group. A secondary aseptic dressing was applied to the protectors. On the 5th and 20th days after the operation, the state of micrographs was studied: blood circulation — according to laser Doppler flowmetry, microstructure in vivo — using optical coherence tomography, microstructure ex vivo — according to histological examination of biopsies.ReSUlTS Differences in the rate of restoration of blood circulation of micrographs in the early stages of the postoperative period were found. In the first 5 days, the perfusion of micrographs under an allodermal protector exceeded the indicator in micrographs under a hydrogel coating by 44 [21; 51] % (p=0.031) due to the contribution of endothelial and neurogenic mechanisms of blood flow modulation. Starting from day 10, the differences in perfusion were levelled, but there were signs of more active endothelial regulation of blood flow under the skin (p=0.028). Histologically, the appearance of full-blooded capillaries was revealed earlier in micrographs under the alloderm than when using a hydrogel protector. By 20 days, under the condition of regular change of hydrogel coatings, the area of wound healing under the studied coatings did not significantly differ. However, the structure of the integumentary tissue under the alloderm according to the optical coherence tomography data was closer to normal skin than when using a hydrogel protector.CONClUSIONS From the point of view of the physiology of the wound process, alloderm is the preferred option of an autograft protector in comparison with a hydrogel coating, which is probably due to the paracrine biological activity of the alloderm. However, hydrogel coatings can provide a comparable level of efficiency, provided they are regularly changed and, potentially, given the properties of cytokine activity.
Introduction. Burns of various etiologies are on the 3-4 place in frequency among all injuries, they are associated with a high percentage of complications, disability and mortality. Currently, a single algorithm for objective verification of the depth of skin damage has not been developed. Numerous diagnostic technologies used to solve this problem require systemic analysis.The aim of study was to analyze current literature data on technologies for instrumental diagnostics of the depth of thermal damage to the skin.Materials and methods. A search for literary sources in databases was conducted using eLIBRARY.RU, PubMed, Cyberleninka databases. The period of publications was limited to 2011-2020.Results. The method of objective "gold standard" verification of thermal damage to the skin remains a biopsy followed by morphological examination, but the method's traumaticity does not allow it to be used for monitoring the course of the process in dynamics, for multi-focal studies. Among non-invasive methods, dermatoscopy and video microscopy are noted, but the small imaging area and the need for direct contact of the device with the skin surface limit the use of these methods. Laser Doppler flowmetry and imaging are fairly accurate non-contact methods that allow assessing the condition of a burn wound in real time. The method is not applicable to wounds with blisters, insufficient sanitation. Laser speckle contrast imaging is used to evaluate blood flow and is based on the analysis of speckle structure fluctuations. The method allows determining the degree of burn damage depending on changes in the blood flow. However, the method is difficult to apply with a vessel diameter sized 40 microns. The method is sensitive to movement and internal factors. Infrared and Raman spectroscopy are technique for evaluating vibrational patterns in a particular spectrum, these can be used to identify a molecule or determine its structure. Simultaneous use of spatial frequency visualization and speckle imaging demonstrated a high level of correlation with the results of histological research, which makes the use of these methods promising. Ultrasound also provides a proper correlation with histological data, but it is an imperfect method due to inaccuracies in determining the thickness of the epidermis, dermis, and scar condition. Optical coherence tomography (OCT) is a non-invasive optical method that allows obtaining high-resolution images of skin architecture in real time. The high level of compliance of the visualized structures, in particular, layers, appendages and vessels of the skin, with histological findings, gave this method a name "optical biopsy". Anatomical congruence of normal and damaged skin was established in an experiment between histology and OCT.Conclusion. Early assessment of the depth of thermal damage to the skin is crucial for choosing a personalized treatment strategy for the burned. None of the modern diagnostic methods is universal. Multimodal approaches to diagnostics are the most effective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.