We study boundedness properties of the classical (singular) Hilbert transform (Hf)(t) = p.v.1/π \int_R f(s)/(t − s)ds acting on Marcinkiewicz spaces. The Hilbert transform is a linear operator which arises from the study of boundary values of the real and imaginary parts of analytic functions. Questions involving the H arise therefore from the utilization of complex methods in Fourier analysis, for example. In particular, the H plays the crucial role in questions of norm-convergence of Fourier series and Fourier integrals. We consider the problem of what is the least rearrangement-invariant Banach function space F(R) such that H : Mφ(R) → F(R) is bounded for a fixed Marcinkiewicz space Mφ(R). We also show the existence of optimal rearrangement-invariant Banach function range on Marcinkiewicz spaces. We shall be referring to the space F(R) as the optimal range space for the operator H restricted to the domain Mφ(R) ⊆ Λϕ0(R). Similar constructions have been studied by J.Soria and P.Tradacete for the Hardy and Hardy type operators [1]. We use their ideas to obtain analogues of their some results for the H on Marcinkiewicz spaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.