We describe a resonator-based optical gyroscope whose sensitivity for measuring absolute rotation is enhanced via use of the anomalous dispersion characteristic of superluminal light propagation. The enhancement is given by the inverse of the group index, saturating to a bound determined by the group velocity dispersion. We also show how the offsetting effect of the concomitant broadening of the resonator linewidth may be circumvented by using an active cavity. For realistic conditions, the enhancement factor is as high as 10 6 . We also show how normal dispersion used for slow light can enhance relative rotation sensing in a specially designed Sagnac interferometer, with the enhancement given by the slowing factor.
We report the observation of low-light level optical interactions in a tapered optical nanofiber (TNF) embedded in a hot rubidium vapor. The small optical mode area plays a significant role in the optical properties of the hot vapor Rb-TNF system, allowing nonlinear optical interactions with nW level powers even in the presence of transit-time dephasing rates much larger than the intrinsic linewidth. We demonstrate nonlinear absorption and V-type electromagnetically induced transparency with cw powers below 10 nW, comparable to the best results in any Rb-optical waveguide system. The good performance and flexibility of the Rb-TNF system makes it a very promising candidate for ultralow power resonant nonlinear optical applications.
Recently, the design of a white-light-cavity has been proposed using negative dispersion in an intra-cavity medium to make the cavity resonate over a large range of frequencies and still maintain a high cavity build-up. This paper presents the demonstration of this effect in a free-space cavity. The negative dispersion of the intra-cavity medium is caused by bi-frequency Raman gain in an atomic vapor cell. A significantly broad cavity response over a bandwidth greater than 20 MHz has been observed. The experimental results agree well with the theoretical model, taking into account effects of residual absorption. A key application of this device would be in enhancing the sensitivity-bandwidth product of the next generation gravitational wave detectors that make use of the so-called signal-recycling mirror.
The group velocity of light becomes superluminal in a medium with a tuned negative dispersion, using two gain peaks, for example. Inside a laser, however, the gain is constant, equaling the loss. We show here that the effective dispersion experienced by the lasing frequency is still sensitive to the spectral profile of the unsaturated gain. In particular, a dip in the gain profile leads to a superluminal group velocity for the lasing mode. The displacement sensitivity of the lasing frequency is enhanced by nearly five orders of magnitude, leading to a versatile sensor of hyper sensitivity.
We demonstrate an ultra-low light level optical modulator using a tapered nano fiber embedded in a hot rubidium vapor. The control and signal beams are co-propagating but orthogonally polarized, leading to a degenerate V-system involving coherent superpositions of Zeeman sublevels. The modulation is due primarily to the quantum Zeno effect for the signal beam induced by the control beam. For a control power of 40 nW and a signal power of 100 pW, we observe near 100% modulation. The ultra-low power level needed for the modulation is due to a combination of the Zeno effect and the extreme field localization in the evanescent field around the taper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.