a b s t r a c tThe EURISOL project, a multi-lateral initiative supported by the EU, aims to develop a facility to achieve high yields of isotopes in radioactive beams and extend the variety of these isotopes towards more exotic types.The neutron source at the heart of the projected facility is designed to generate isotopes by fissioning uranium carbide (UC) targets arranged around a 4 MW neutron source. For reasons of efficiency, it is essential that the neutron source be as compact as possible, to avoid losing neutrons by absorption whilst maximising the escaping neutron flux, thus increasing the number of fissions in the UC targets. The resulting configuration presents a challenge in terms of absorbing heat deposition rates of up to 8 kW/cm 3 in the neutron source; it has led to the selection of liquid metal for the target material. The current paper presents the design of a compact high-power liquid-metal neutron source comprising a specially optimised beam window concept. The design is based on two-dimensional (2D) and three-dimensional (3D) computational fluid dynamics (CFD) numerical simulations for thermal hydraulics and hydraulic aspects, as well as finite-element method (FEM) for assessing thermomechanical stability. The resulting optimised design was validated by a dedicated hydraulic test under realistic flow conditions. A full-scale mock-up was built at the Paul Scherrer Institute (PSI) and was tested at the Institute of Physics of the University of Latvia (IPUL).
a b s t r a c tStructural-hydraulic tests of the European Isotope Separation On-Line (EURISOL) neutron converter target mock-up, named MErcury Target EXperiment 1 (METEX 1), have been conducted by Paul Scherrer Institut (PSI, Switzerland) in cooperation with Institute of Physics of the University of Latvia (IPUL, Latvia). PSI proceeded with extensive thermal-hydraulic and structural computational studies, followed by the target mock-up tests carried out on the mercury loop at IPUL.One of the main goals of the METEX 1 test is to investigate the hydraulic and structural behaviour of the EURISOL target mock-up for various inlet flow conditions (i.e. mass flow rates) and, in particular, for nominal operating flow rate and pressure in the system. The experimental results were analysed by advanced time-frequency methods such as Short-Time Fourier Transform in order to check the vibration characteristics of the mock-up and the resonance risk. The experimental results (obtained in METEX 1), which include inlet flow rate, pressure of the cover gas, total pressure loss, structural acceleration, sound and strain data, were jointly analysed together with numerical data obtained from Computational Fluid Dynamics (CFD).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.