Controlled-release fertilizers (CRFs) provide an extended period of nutrient availability for turfgrass growth and may limit offsite nutrient losses compared with water-soluble fertilizers (WSFs). However, increasing temperatures and soil moisture accelerate nutrient release from many CRFs. As a result, turfgrass managers growing turfgrass in warm, humid climates with high rainfall question how effective CRFs are in reducing nutrient runoff losses while maintaining aesthetic quality. A study was conducted to examine the effect of three fertilizer treatments—an unfertilized control, a CRF applied at 87 lb/acre nitrogen (N), and a WSF applied at 87 lb/acre N as a split application (43.5 lb/acre N) at 0 and 45 d after initial fertilization (DAIF)—on nutrient losses from ‘Tifway’ hybrid bermudagrass (Cynodon dactylon × C. transvaalensis) during surface runoff events. Rainfall simulations were conducted 3, 28, 56, and 84 DAIF at an intensity of 3 inches per hour to induce 30 minutes of runoff. Water samples were analyzed for inorganic N and dissolved total phosphorus (DTP). Hybrid bermudagrass quality was similar among fertilizer treatments with CRF application, resulting in slightly higher quality. Across all fertilizer treatments, hybrid bermudagrass exhibited similar runoff initiation time and volumes within each rainfall simulation event. Nutrient losses from fertilized hybrid bermudagrass were greatest at the first runoff event at 3 DAIF, with WSF having the greatest losses. The subsequent application of WSF 45 DAIF did not result in greater N and DTP losses compared with CRF application, most likely a result of water incorporation applied to prevent wilting. Hybrid bermudagrass fertilized with a single application of CRF resulted in 23.6% and 55.6% reductions in cumulative inorganic N and DTP losses, respectively, compared with hybrid bermudagrass fertilized with the a split application of WSF.
The high sprig planting rate resulted in faster bermudagrass establishment.• The high and low N fertilizer rates resulted in similar bermudagrass establishment.• Runoff, sediment, and nutrient losses decreased over time as groundcover increased.• High sprigging and low N fertilization rates reduce nutrient losses during establishment.
Nutrient leaching during nursery container production can have negative effects on plant growth and the environment. The objective of this study was to evaluate effects of fertilizer source at two irrigation depths on nutrient leaching during coleus [Plectranthus scutellarioides (L.) Codd] ‘Solar Sunrise' container production to develop best management practices. Coleus received no fertilizer, a controlled-release fertilizer (CRF), or a water-soluble fertilizer (WSF) applied at 0.30 kg N and P per m3 (0.02 lb per ft3) and were irrigated at 1.9 or 3.8 cm.day−1 (0.7 or 1.5 in.day−1) for 56 days after planting (DAP). Leachate was analyzed every 7 DAP for inorganic N and dissolved total P (DTP). At 56 DAP, root biomass, leaf quality, and plant growth index were similar between CRF and WSF treatments at both irrigation depths. Highest inorganic N and DTP losses occurred within 21 DAP. Application of WSF resulted in higher cumulative N and DTP losses compared to CRF applications. Coleus irrigated at 3.8 cm.day−1 and fertilized with WSF resulted in higher DTP losses compared to CRF applications regardless of irrigation depth. Reducing irrigation reduced inorganic N leaching for each fertilizer source. Application of CRF provided consistent growth while curbing nutrient losses across both irrigation depths compared to WSF.
Index words: controlled-release fertilizer, water-soluble fertilizer, nursery producers, best management practices.
Chemicals used in this study: Micronutrients mix (Micromax®); controlled-release fertilizer (Osmocote® Classic); water-soluble fertilizer (Grower's Special).
Species used in this study: Coleus [Plectranthus scutellarioides (L.) Codd] ‘Solar Sunrise'.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.