In this paper, we have configured InGaAsP QW (quantum well) heterostructures of type-I and type-II band alignments and simulated their optical characteristics by solving 6 x 6 Kohn-Luttinger Hamiltonian Matrix. According to the simulation results, the InGaAsP QW heterostructure of type-I band alignment has been found to show peak optical gain (TE mode) of the order of~3600/cm at the transition wavelength~1.40 µm; while of type-II band alignment has achieved the peak gain (TE mode) of the order of~7800/cm at the wavelength of~1.85 µm (eye safe region). Thus, both of the heterostructures can be utilized in designing of opto-or photonic devices for the emission of radiations in NIR (near infrared region) but form the high gain point of view, the InGaAsP of type-II band alignment can be more preferred.
Incorporation of dopants efficiently in semiconductors at the nanoscale is an open challenge and is also essential to tune the conductivity. Typically, heating is a necessary step during nanomaterials’ solution growth either as pristine or doped products. Usually, conventional heating induces the diffusion of dopant atoms into host nanocrystals towards the surface at the time of doped sample growth. However, the dielectric heating by microwave irradiation minimizes this dopant diffusion problem and accelerates precursors’ reaction, which certainly improves the doping yield and reduces processing costs. The microwave radiation provides rapid and homogeneous volumetric heating due to its high penetration depth, which is crucial for the uniform distribution of dopants inside nanometer-scale semiconducting materials. This chapter discusses the effective uses of microwave heating for high-quality nanomaterials synthesis in a solution where doping is necessary to tune the electronic and optoelectronic properties for various applications.
This paper reports the effects of variation of number of quantum wells in material gain characteristics and lasing wavelength of step index separately confined type-I InGaAsP/InP lasing nano-heterostructure for different carrier concentrations at room temperature in TE (Transverse Electric) mode of polarization. Peak material gain is found to be highest when the number of quantum well is one in the structure. However, for the case of 3QWs, 5QWs and 7QWs, it is almost same at a particular carrier density. Lasing wavelength at peak material gain considerably increases as the number of quantum well layers vary from single quantum well layer to three quantum well layers in the active region and after that it will remain almost same by any further increase in number of quantum wells for a particular carrier density. Furthermore, negative gain condition in the material gain spectra exists in the case of multiple quantum wells only at carrier concentration of 2×1018/cm3. The results suggest that the proposed nano-heterostructure is highly suitable as a light source in fiber optic links for long distance communication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.