Chronic kidney disease (CKD) is one of the most widely spread diseases across the world. Mysteriously some of the areas in the world like Srilanka, Nicrgua and Uddanam (India), this disease affect more and it is cause of thousands of deaths particular areas. Now days, the prevention with utilizing statistical analysis and early detection of CKD with utilizing Machine Learning (ML) and Neural Networks (NNs) are the most important topics. In this research work, we collected the data form Uddanam (costal area of srikakulam district, A.P, India) about patient's clinical data, living styles (Habits and culture) and environmental conditions (water, land and etc.) data from 2016 to 2019. In this paper, we conduct the statistical analysis, Machine Learning (ML) and Neural Network application on clinical data set of Uddanam CKD for prevention and early detection of CKD. As per statistical analysis we can prevent the CKD in the Uddanam area. As per ML analysis Naive Bayes model is the best where the process model is constructed within 0.06 seconds and prediction accuracy is 99.9%. In the analysis of NNs, the 9 neurons hidden layer (HL) Artificial Neural Network (ANN) is very accurate than other all models where it performs 100% of accuracy for predicting CKD and it takes the 0.02 seconds process time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.