Abstract. In non-traditional machining, electrical discharge machining (EDM) has tremendous potential on account of versatility of its applications and is successfully, commercially used in modern industries. EDM process is capable to machine geometrically complex, hard material components, tool steels, composites, super alloys, ceramics and carbides. In EDM, Material Removal Rate (MRR) and Tool wear rate (TWR) are generally analyzed to assess its performance. For this, a perfect combination of input variables is required. In the present study, machining is done on Tool steel workpiece material using a pure copper electrode. The input parameters like Pulse-ON time, Pulse-OFF time, Current and Gap voltage are selected for experimentation and Taguchi method is employed for the DOE by considering 4 factors and 3 levels. A total of 27 experiments (L27 orthogonal array) have been designed with a possible combination of selected input parameters. The present work mainly focuses on development of an extensive mathematical model for correlating the input and output variables using a conventional regression analysis. The adequacy of proposed model was tested with the help of some collected data through experimentation using Taguchi optimized DOE. The proposed linear multi-variable regression equation was found to be a best fitted model with 98% confidence levels.Keywords: Electrical discharge machining (EDM), material removal rate (MRR), tool wear rate (TWR).
This article focuses on the synthesis of a steering mechanism that exactly meets the requirements of steering geometry. It starts from reviewing the four-bar linkage, then discusses the number of points that a common four-bar linkage could precisely trace at most. After pointing out the limits of a four-bar steering mechanism, this article investigates the turning geometry for steering wheels and proposes a steering mechanism using servo motors and ARDUINO board. The pitch curves, addendum curves, dedendum curves, tooth pro les and transition curves of the noncircular gears are formulated and designed. Finally, kinematic simulations are executed to demonstrate the target of design
Now a day's refrigerators are very essential parts of human life and cannot sustain our life without these. But these became more commercial so that simple solar power refrigerators working on evaporative cooling principle are essential. These Solar-powered refrigerators are able to keep perishable goods such as medicines; meat and dairy cool in hot climates, and are used to keep much needed vaccines at their appropriate temperature to avoid spoilage with less cost. This paper presents the design and fabrication of solar power refrigerators by using different materials. Finally, heat transfer coefficients have been calculated for different models making with different materials in order to get better cooling effect within a less time period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.