Persistent pulmonary hypertension of the newborn (PPHN) features hypoxemia, pulmonary vasoconstriction, and impaired cardiac inotropy. We previously reported low basal and stimulated cAMP in hypoxic pulmonary artery smooth muscle cells (PASMCs). We now examine pulmonary arterial adenylyl cyclase (AC) activity and regulation in hypoxic PPHN. PPHN was induced in newborn swine by normobaric hypoxia (fraction of inspired oxygen 0.10) for 72 h and compared with age-matched normoxic controls. We studied relaxation of pulmonary arterial (PA) rings to AC activator forskolin and cGMP activator sodium nitroprusside (SNP) by isometric myography, ATP content, phosphodiesterase activity, AC content, isoform expression, and catalytic activity in presence or absence of Gαs-coupled receptor agonists, forskolin, or transnitrosylating agents in human and neonatal porcine PASMCs and HEK293T stably expressing AC isoform 6, after 72 h hypoxia (10% O2) or normoxia (21% O2). Relaxation to forskolin and SNP were equally impaired in PPHN PA. AC-specific activity decreased in hypoxia. PASMC from PPHN swine had reduced AC activity despite exposure to normoxia in culture; transient hypoxia in vitro further decreased AC activity. Prostacyclin receptor ligand affinity decreased, but its association with Gαs increased in hypoxia. Total AC content was unchanged by hypoxia, but AC6 increased in hypoxic cells and PPHN pulmonary arteries. Impairment of AC6 activity in hypoxia was associated with nitrosylation. PPHN PA relaxation is impaired because of loss of AC activity. Hypoxic AC is inhibited because of S-nitrosylation; inhibition persists after removal from hypoxia. Downregulation of AC-mediated relaxation in hypoxic PA has implications for utility of Gαs-coupled receptor agonists in PPHN treatment.
BACKGROUND AND PURPOSEDysregulation of the thromboxane A2 (TP) receptor, resulting in agonist hypersensitivity and hyper-responsiveness, contributes to exaggerated vasoconstriction in the hypoxic pulmonary artery in neonatal persistent pulmonary hypertension. We previously reported that hypoxia inhibits TP receptor phosphorylation, causing desensitization. Hence, we examined the role of PKA-accessible serine residues in determining TP receptor affinity, using site-directed mutational analysis. EXPERIMENTAL APPROACHVasoconstriction to a thromboxane mimetic and phosphorylation of TP receptor serine was examined in pulmonary arteries from neonatal swine with persistent pulmonary hypertension and controls. Effects of hypoxia were determined in porcine and human TP receptors. Human TPα serines at positions 324, 329 and 331 (C-terminal tail) were mutated to alanine and transiently expressed in HEK293T cells. Saturation binding and displacement kinetics of a TP antagonist and agonist were determined in porcine TP, wild-type human TPα and all TP mutants. Agonist-elicited calcium mobilization was determined for each TP mutant, in the presence of a PKA activator or inhibitor, and in hypoxic and normoxic conditions. KEY RESULTSThe Ser324A mutant was insensitive to PKA activation and hypoxia, had a high affinity for agonist and increased agonist-induced calcium mobilization. Ser329A was no different from wild-type TP receptors. Ser331A was insensitive to hypoxia and PKA with a decreased agonist-mediated response. CONCLUSIONS AND IMPLICATIONSIn hypoxic pulmonary hypertension, loss of site-specific phosphorylation of the TP receptor causes agonist hyper-responsiveness. Ser324 is the primary residue phosphorylated by PKA, which regulates TP receptor-agonist interactions. Ser331 mutation confers loss of TP receptor-agonist interaction, regardless of PKA activity. AbbreviationsPPHN, persistent pulmonary hypertension of the newborn; TP, thromboxane prostanoid receptor; TxA2, thromboxane A2 BJP British Journal of Pharmacology
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.