In this article, we discuss the dynamics of a Leslie–Gower ratio-dependent predator–prey model incorporating fear in the prey population. Moreover, the Allee effect in the predator growth is added into account from both biological and mathematical points of view. We explore the influence of the Allee and fear effect on the existence of all positive equilibria. Furthermore, the local stability properties and possible bifurcation behaviors of the proposed system about positive equilibria are discussed with the help of trace and determinant values of the Jacobian matrix. With the help of Sotomayor’s theorem, the conditions for existence of saddle-node bifurcation are derived. Also, we show that the proposed system admits limit cycle dynamics, and its stability is discussed with the value of first Lyapunov coefficient. Moreover, the numerical simulations including phase portrait, one- and two-parameter bifurcation diagrams are performed to validate our important findings.
The discrete-time system has more complex and chaotic dynamical behaviors as compared to the continuous-time system. This paper extends a discrete Leslie–Gower predator-prey system with the Allee effect in the predator’s population, whose dynamics are analyzed and explored. We have determined the equilibrium points and studied their local stability properties. We find that the system undergoes flip bifurcation and Neimark–Sacker bifurcation around the interior equilibrium point by choosing the Allee parameter as a bifurcation parameter. We discuss the stability and direction of both bifurcations with the help of the normal form theory and center manifold theorem. The flip bifurcation and Neimark–Sacker bifurcation are the most common routes to the chaotic orbit in the discrete system. Moreover, we utilize state feedback, pole placement, and hybrid control methods to control the chaos in the system. The work is complete with the numerical simulations to confirm the analytical findings.
Dynamical analysis of a delayed tri-trophic food chain consisting of prey, an intermediate, and a top predator is investigated in this paper. The additive Allee effect is introduced in the prey population, and it is assumed that there is a time lag due to the gestation effect in the intermediate predator. The interference among the prey and the intermediate predator is according to Holling type II, while the interaction between the intermediate and top predators follows the Crowley–Martin functional response. The local stability and bifurcation analysis of the proposed model at the interior equilibrium point are studied. Numerical simulations are provided to ensure the mathematical results.
This study focuses on the spatial-temporal dynamics of predator–prey model with cross-diffusion where the intake rate of prey is per capita predator according to ratio-dependent functional response and the prey is harvested through nonlinear harvesting strategy. The permanence analysis and local stability analysis of the proposed model without cross-diffusion are analyzed. We derive the conditions for the appearance of diffusion-driven instability and global stability of the considered model. Also the parameter space for Turing region is specified by keeping the cross-diffusion coefficient as one of the crucial parameters. Numerical simulations are given to justify the proposed theoretical results and to show that the cross-diffusion term plays a significant role in the pattern formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.