SUMMARY The capability of the direct volume of fluid method for describing the surface dynamics of a free two‐dimensional rising bubble is evaluated using quantities of a recently published benchmark. The model equations are implemented in the open source computational fluid dynamics library OpenFOAM®. Here, a main ingredient of the numerical method is the so‐called surface compression that corrects the fluxes near the interface between two phases. The application of this method with respect to two test cases of a benchmark is considered in the main part. The test cases differ in physical properties, thus in different surface tension effects. The quantities centre of mass position, circularity and rise velocity are tracked over time and compared with the ones given in the benchmark. For test case one, where surface tension effects are more pre‐eminent, deviations from the benchmark results become more obvious. However, the flow features are still within reasonable range. Nevertheless, for test case two, which has higher density and viscosity ratios and above all a lower influence of the surface tension force, good agreement compared with the benchmark reference results is achieved. This paper demonstrates the good capabilities of the direct volume of fluid method with surface compression with regard to the preservation of sharp interfaces, boundedness, mass conservation and low computational time. Some limitation regarding the occurrence of parasitic currents, bad pressure jump prediction and bad grid convergence have been observed. With these restrictions in mind, the method is suitable for the simulation of similar two‐phase flow configurations. Copyright © 2012 John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.