Aims/hypothesis: Renal accumulation of AGEs may contribute to the progression of diabetic nephropathy. We evaluated the effect of ramipril (a pure ACE inhibitor) and AVE7688 (a dual inhibitor of ACE and neutral endopeptidase) on renal accumulation of the advanced glycation end-product (AGE) 3-deoxyglucosone-imidazolone, carboxymethyllysine (CML) and pentosidine, and on clearance of CML in type 2 diabetes. Methods: Male Zucker diabetic fatty rats (ZDF, Gmi-fa/fa) rats were treated from age 10 to 37 weeks with ramipril (1 mg·kg −1 ·day −1 ), AVE7688 (45 mg·kg −1 ·day −1 ) or without drug. Ramipril and AVE7688 reduced albuminuria by 30 and 90%, respectively. Results: ZDF rats showed increased renal accumulation of the AGE subtypes 3-deoxyglucosone-imidazolone, pentosidine and CML by about 40, 55 and 55%, respectively compared with heterozygous, non-diabetic control animals at the age of 37 weeks. AVE7688 but not ramipril attenuated the renal accumulation of 3-deoxyglucosone-imidazolone, pentosidine and CML and improved CML clearance in ZDF rats. During glycation reactions in vitro, AVE7688 also demonstrated potent chelating activity and inhibited metal-catalysed formation of pentosidine and CML. Conclusions/interpretation: Improved AGE clearance and direct inhibition of AGE formation by chelation may contribute to reduced accumulation of renal AGEs and to the nephroprotective effects of vasopeptidase inhibition in type 2 diabetes.
Repeated mild heat shock treatment has been shown to have anti-aging effects on cellular mechanisms in vitro. Among these, the age-associated accumulation of advanced glycation end products (AGEs), such as N(epsilon)-(carboxymethyl)lysine (CML), has been demonstrated to be effectively prevented in glyoxal-exposed human skin fibroblasts following mild heat shock treatment. The biochemical mechanism responsible for this inhibition is not yet known. However, the involvement of heat shock proteins (HSPs) and the misfolded proteins degrading the ubiquitin-proteasome system have been hypothesized. As AGE-modified proteins are likely to be conformationally modified, we investigated whether treatment of human intestinal cells with casein-linked CML or nonprotein-linked CML affects the expression of HSPs and the ubiquitin-proteasome system by using matrix-assisted laser desorption/ionization-time-of-flight tandem mass spectroscopy (after protein separation by two-dimensional gel electrophoresis) and by Western blotting. Compared to nontreated control cells, expression of HSP90, HSP60, HSP70 chaperones, and the proteasome S26 ATPase subunit 2 were significantly upregulated in casein-CML and in CML-treated cells. Exposure of Caco-2 cells to beta-amyloid, a nonglycation product, revealed similar results. In conclusion, the results indicate that CML and casein-linked CML activate the expression of HSPs as well as the proteasome system, which are involved in the degradation of misfolded and possibly glycated proteins. Whether this mechanism is based on binding to cell surface receptors, such as the receptor for AGE, has to be clarified in future studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.