Physiologically, itch and pain are transmitted in separate specific peripheral C-units and central afferent pathways. Some neuropathic pain patients with intact but sensitized (irritable) primary C-nociceptors have spontaneous pain, heat hyperalgesia, static and dynamic mechanical hyperalgesia. The question was whether cutaneous histamine application induces pain in these patients. For comparison histamine was applied into normal skin experimentally sensitized by capsaicin. Histamine application in the capsaicin-induced primary or secondary hyperalgesic skin did not change the intensity and quality of capsaicin pain. Itch was profoundly inhibited. Conversely, histamine application in neuropathic skin induced severe increase in spontaneous burning pain but no itch. In neuropathies irritable nociceptors may express histamine receptors or induce central sensitization to histaminergic stimuli so that itch converts into pain.
State-of-the-art 3D-aware generative models rely on coordinate-based MLPs to parameterize 3D radiance fields. While demonstrating impressive results, querying an MLP for every sample along each ray leads to slow rendering. Therefore, existing approaches often render low-resolution feature maps and process them with an upsampling network to obtain the final image. Albeit efficient, neural rendering often entangles viewpoint and content such that changing the camera pose results in unwanted changes of geometry or appearance. Motivated by recent results in voxel-based novel view synthesis, we investigate the utility of sparse voxel grid representations for fast and 3D-consistent generative modeling in this paper. Our results demonstrate that monolithic MLPs can indeed be replaced by 3D convolutions when combining sparse voxel grids with progressive growing, free space pruning and appropriate regularization. To obtain a compact representation of the scene and allow for scaling to higher voxel resolutions, our model disentangles the foreground object (modeled in 3D) from the background (modeled in 2D). In contrast to existing approaches, our method requires only a single forward pass to generate a full 3D scene. It hence allows for efficient rendering from arbitrary viewpoints while yielding 3D consistent results with high visual fidelity.
Itch sensation can be inhibited by simultaneously applied cutaneous pain at the same skin site via a central mechanism. Deep muscle pain is often associated with sensory changes in the corresponding dermatome. We investigated whether experimentally induced muscle pain has any influence on histamine-induced itch and vice versa in a double blind placebo-controlled study. Experiments were performed in 18 healthy subjects. In nine individuals control iontophoresis of histamine into the forearm produced a distinct itch sensation. Another nine individuals participated in an additional experiment in which histamine and saline were iontophoresed on the forearm in a randomized double-blinded two-way crossover design after intramuscular injection of capsaicin into the ipsilateral brachioradial muscle. Capsaicin-induced muscle pain reduced itch sensation significantly. In contrast, capsaicin-induced muscle pain increased significantly after cutaneous histamine application compared to muscle pain after iontophoresis of saline (placebo). These novel data indicate that muscle pain inhibits itch and histamine increases muscle pain. A bi-directional interaction between cutaneous histamine-sensitive afferents and nociceptive muscle afferents via central mechanisms is suggested.
Nose/throat-swabs from 1049 patients were screened for MRSA using CHROMagar MRSA, LightCycler Advanced MRSA, and Detect-Ready MRSA. Results were compared to the CHROMagar MRSA results, which was set as reference system. MRSA was detected in 3.05% of the patients with CHROMagar MRSA. LightCycler MRSA Advanced showed a higher clinical sensitivity (84.38%) than Detect-Ready MRSA (57.69%).The negative predictive values were high for both tests (>98%). The specificity and the positive predictive value were higher for the Detect-Ready MRSA test than for the LightCycler MRSA test (99.59% and 78.95% versus 98.52% and 64.29%). For routine screening LightCycler MRSA Advanced proved to be more efficient in our clinical setting as the clinical sensitivity was much higher than the sensitivity of Detect-Ready MRSA. CHROMagar MRSA detected more MRSA positive samples than both PCR methods, leading to the conclusion that the combination of PCR with cultural screening is still the most reliable way for the detection of MRSA. LightCycler MRSA Advanced was faster and needed less hands-on time. The advantage of Detect-Ready MRSA was the additional identification of methicillin-sensitive S.aureus (here in 34.63% of the samples), an information which can be possibly used for reducing the risk of postoperative infections in surgical patients in future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.