Today, battery electric vehicles as well as stationary battery system demand lithium-ion batteries. Lithium titanate battery cells with their excellent charge and discharge rate capabilities in combination with their long lifetime have become an attractive option for these kinds of applications. However, to ensure safe operation of lithium batteries - especially in high power applications - temperature observation is mandatory. So, it is highly important to have a reliable thermal management system with proper temperature estimation. Normally, an external temperature sensor is placed on the surface of the battery case. This method is not very appropriate because only the external battery temperature can be detected, which is delayed by the thermal coupling between sensor and cell, and thermal capacity of the battery cell. This paper describes the development of a circuit that performs sensorless temperature estimation of a lithium-ion battery cell. A functional prototype was developed and comprehensive tests are performed to verify the functionality of this prototype. It is demonstrated that it is possible to determine the internal equivalent temperature of the cell using the measurement results of the developed circuit. Further, the circuit concept can be easily integrated into the monitoring system of high power battery systems. As a result, the developed prototype may enhance the safety of battery systems by proper temperature estimation of lithium-ion batteries used in electric vehicles and stationary energy storage systems
The process of designing many industrial products is today characterized by the use of ad hoc methods, iterative "trial and error "-like proceedings and the engineer's own experience and intuition. This is due to the complexity of the problems attempted, and the disJiculty to formalize them and express them mathematically. nis paper suggests the use of a genetic algorithm to partially automate industrial design, and describes an example where the method has been successfully used to improve the design of a gas turbine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.