Background and Purpose-Endothelin-1 (ET-1) is suggested to be a major cause of cerebral vasospasm after subarachnoid hemorrhage. However, the mechanism of ET-1-induced contraction in cerebral arteries remains unclear. This study was undertaken to demonstrate the possible role of protein tyrosine kinase (PTK), mitogen-activated protein kinase (MAPK), and protein kinase C (PKC) in ET-1-induced contraction. Methods-PD-98059, damnacanthal, wortmannin, AG-490, genistein, calphostin C, and staurosporine were used to inhibit, or relax, the ET-1-induced contraction of basilar artery, studied with an isometric tension system. Immunoprecipitation of MAPK in ET-1-stimultated rings of basilar artery without or with the above inhibitors was studied with Western blot.
Background and Purpose-It has been suggested that mitogen-activated protein kinase (MAPK) is involved in cerebral vasospasm after subarachnoid hemorrhage. The present study was undertaken to explore the inhibitory effect of U0126, a novel MAPK inhibitor, in the contraction of the rabbit basilar artery by 3 spasmogens: hemolysate, oxyhemoglobin, and bloody cerebrospinal fluid (CSF) from patients with vasospasm. Methods-The contraction and relaxation of rabbit basilar arteries were measured by isometric tension. MAPK immunoprecipitation was assessed by Western blot analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.