In an ultrathin topological insulator (TI) film, a hybridization gap opens in the TI surface states, and the system is expected to become either a trivial insulator or a quantum spin Hall insulator when the chemical potential is within the hybridization gap. Here we show, however, that these insulating states are destroyed by the presence of a large and long-range-correlated disorder potential, which converts the expected insulator into a metal. We perform transport measurements in ultrathin, dual-gated topological insulator films as a function of temperature, gate voltage, and magnetic field, and we observe a metallic-like, non-quantized conductivity, which exhibits a weak antilocalizationlike cusp at low magnetic field and gives way to a nonsaturating linear magnetoresistance at large field. We explain these results by considering the disordered network of electron-and hole-type puddles induced by charged impurities. We argue theoretically that such disorder can produce an insulator-to-metal transition as a function of increasing disorder strength, and we derive a condition on the band gap and the impurity concentration necessary to observe the insulating state. We also explain the linear magnetoresistance in terms of strong spatial fluctuations of the local conductivity, using both numerical simulations and a theoretical scaling argument.
We report magnetotransport measurements on magnetically doped (Bi,Sb)2Te3 films grown by molecular beam epitaxy. In Hallbar devices, we observe logarithmic dependence of transport coefficients in temperature and bias voltage which can be understood to arise from electron -electron interaction corrections to the conductivity and self-heating. Submicron scale devices exhibit intriguing quantum oscillations at high magnetic fields with dependence on bias voltage. The observed quantum oscillations can be attributed to bulk and surface transport.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.