The present study deals with MHD (magneto hydrodynamics) mixed convection flow of a Casson fluid over an exponentially stretching sheet with the effects of Soret and Dufour, thermal radiation, chemical reaction. The governing partial differential equations are converted into ordinary differential equations by using similarity transformations. These equations are then solved numerically by applying finite difference scheme known as the Keller Box method. The effects of various parameters on velocity, temperature and concentration profiles are presented graphically to interpret and the results are discussed.
The present study deals with MHD mixed convection stagnation point flow over a stretching sheet with the effects of heat source/sink and viscous dissipation including convective boundary conditions. The governing partial differential equations are transformed into ordinary differential equations by applying similarity transformations. These equations are then solved numerically by using finite difference scheme known as the Keller Box method. The effects of various parameters on velocity and temperature profiles are presented graphically interpreted and the results are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.