Passive radiative cooling includes using the atmospheric window to emit heat energy to the cold outer space and hence reduce the temperature of objects on Earth. In most cases, radiative cooling is required in summer and suppressed in winter for thermal comfort. Recent radiative cooling materials cannot self-adjust cooling capacity according to season and environment, thus limiting their applications. In this study, we have designed a temperature-controlled phase change structure (TCPCS). The TCPCS benefits radiative coolers to adjust their cooling ability according to the ambient temperature. In the outdoor test, the TCPCS can help the cooler to turn off at low temperatures and turn on at high temperatures automatically; the coolers with and without TCPCS have maximal temperature differences of 9.7 and 19.6 °C, respectively, in a whole day. Furthermore, we have further improved and designed a V-shaped TCPCS that can simultaneously achieve the dual functions of cooling in summer and heating in winter. The TCPCS assembled here is a simple, feasible, and scalable structure for self-adaptive cooling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.