In the last decade, machine learning has become very interesting, driven by cheaper computing power and costly storage—so that growing numbers of data can be saved, processed and analysed effectively. Enhanced algorithms are designed and used to identify hidden insights and correlations between non-human data elements in broad datasets. These insights help companies to better decide and optimize key indicators of interest. Machine learning is becoming more common because of the agnostic use of learning algorithms. The paper presents a number of machinery and auxiliary tumour processes to assign health resources, and proposes a number of new ways to use these resources at the time of artificial intelligence in order to make human life part of this process and explore the good conditions which are shared by both the medical and computer industries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.