Due to their large electrical conductivity, stand-alone metallic films are highly reflective at microwave frequencies. For this reason, it is nearly impossible to observe Faraday rotation in ferromagnetic metal layers, even in films just tens of nanometers thick. Here, we show using numerical simulations that a stack of cobalt nano-layers interlaced between dielectric layers can become highly transmissive and display a large Faraday rotation and extreme directionality. A 45-degree Faraday rotation commonly used in microwave isolators can be achieved with ferromagnetic metallic layers as thin as tens of nanometers.
A localized mode in a photonic layered structure can develop nodal points (nodal planes), where the oscillating electric field is negligible. Placing a thin metallic layer at such a nodal point results in the phenomenon of induced transmission. Here we demonstrate that if the nodal point is not a point of symmetry, then even a tiny alteration of the permittivity in the vicinity of the metallic layer drastically suppresses the localized mode along with the resonant transmission. This renders the layered structure highly reflective within a broad frequency range. Applications of this hypersensitive transport for optical and microwave limiting and switching are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.