Recent achievements, based on lead (Pb) halide perovskites, have prompted comprehensive research on low-cost photovoltaics, in order to avoid the major challenges that arise in this respect: Stability and toxicity. In this study, device modelling of lead (Pb)-free perovskite solar cells has been carried out considering methyl ammonium tin bromide (CH3NH3SnBr3) as perovskite absorber layer. The perovskite structure has been justified theoretically by Goldschmidt tolerance factor and the octahedral factor. Numerical modelling tools were used to investigate the effects of amphoteric defect and interface defect states on the photovoltaic parameters of CH3NH3SnBr3-based perovskite solar cell. The study identifies the density of defect tolerance in the absorber layer, and that both the interfaces are 1015 cm−3, and 1014 cm−3, respectively. Furthermore, the simulation evaluates the influences of metal work function, uniform donor density in the electron transport layer and the impact of series resistance on the photovoltaic parameters of proposed n-TiO2/i-CH3NH3SnBr3/p-NiO solar cell. Considering all the optimization parameters, CH3NH3SnBr3-based perovskite solar cell exhibits the highest efficiency of 21.66% with the Voc of 0.80 V, Jsc of 31.88 mA/cm2 and Fill Factor of 84.89%. These results divulge the development of environmentally friendly methyl ammonium tin bromide perovskite solar cell.
Radio frequency (RF) magnetron sputtering was used to deposit tungsten disulfide (WS 2) thin films on top of soda lime glass substrates. The deposition power of RF magnetron sputtering varied at 50, 100, 150, 200, and 250 W to investigate the impact on film characteristics and determine the optimized conditions for suitable application in thin-film solar cells. Morphological, structural, and opto-electronic properties of as-grown films were investigated and analyzed for different deposition powers. All the WS 2 films exhibited granular morphology and consisted of a rhombohedral phase with a strong preferential orientation toward the (101) crystal plane. Polycrystalline ultra-thin WS 2 films with bandgap of 2.2 eV, carrier concentration of 1.01 × 10 19 cm −3 , and resistivity of 0.135 Ω-cm were successfully achieved at RF deposition power of 200 W. The optimized WS 2 thin film was successfully incorporated as a window layer for the first time in CdTe/WS 2 solar cell. initial investigations revealed that the newly incorporated WS 2 window layer in CdTe solar cell demonstrated photovoltaic conversion efficiency of 1.2% with V oc of 379 mV, J sc of 11.5 mA/cm 2 , and FF of 27.1%. This study paves the way for WS 2 thin film as a potential window layer to be used in thin-film solar cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.