For human the most fundamental requirement is having a healthy life, which is being difficult to maintain day to day as we are getting more progress in technological era. Among the possible reasons of unnatural death, heart disease based causes are showing very significant part. The diagnosis of heart diseases is a vital and intricate job. The recognition of heart disease from diverse features or signs is a multi-layered problem that is highly sensitive with respect diagnostic tests and establishing the relationship with multiple parameters is very difficult. In result decision is not free from false assumptions and is frequently accompanied by impulsive effects. This encourages developing a more reliable and cost effective knowledge based algorithmic approach to detect the heart disease. From engineering point of view, solution for detecting the presence of heart diseases is developed with the concept of artificial intelligence in data mining in this study. Feed forward architecture of neural network technology is taken as platform of computation to generate the intelligence in association with well established field of genetic algorithm (GA). A comparative performance has presented between both learning concepts with various different size of architecture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.