The N-hydroxylation of carcinogenic arylamines represents an initial step in their metabolic activation. Animal studies have shown that this reaction is catalyzed by the cytochrome P450 (P450) enzymes P450 1A1 and P450 1A2. In this study, utilizing enzymes expressed in Escherichia coli (and purified) or in human B-lymphoblastoid cells, the catalytic activities of recombinant human P450 1A1, P450 1A2, and P450 3A4 for N-hydroxylation of several carcinogenic arylamines were determined. P450 1A2 from both expression systems catalyzed the N-hydroxylation of 4-aminobiphenyl and the heterocyclic amines, 2-amino-3-methylimidazo[4,5-f/quinoline (IQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Rates were similar, with values of 1.1-7.8 nmol/min/nmol P450. In contrast, P450 1A1 catalyzed N-hydroxylation of only PhIP, and no activity was observed with P450 3A4. Further kinetic analysis with purified P450 1A2 showed similar Km and Vmax values for N-hydroxylation of the arylamines. Furafylline and fluvoxamine, inhibitors of P450 1A2 activity in human liver microsomes, were found to be inhibitory of the recombinant P450 1A2 N-hydroxylation activity. Results from this study are supportive of a major role for human P450 1A2 in the metabolic activation of arylamines.
Carcinogenic aromatic amines, including the heterocyclic amines, may pose a significant health risk to humans. To determine the potential for chemoprotective intervention against the carcinogenicity of these arylamines and to better understand their mechanism of action, a range of agents, most of them natural dietary constituents, was examined in vitro for their ability to modulate the N-hydroxylation of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 4-aminobiphenyl (ABP), an initial step in their bioactivation. Experiments were conducted with rat and human liver microsomes. The agents (diallyl sulfide, indole-3-carbinol, alpha-angelicalactone, cafestol/kahweol palmitates, cafestol, kahweol, benzylisothiocyanate, genistin, formononetin, daidzin, equol, biochanin A, Oltipraz, tannic acid, quercetin, ethoxyquin, green tea, and black tea) comprised a variety of chemical classes that included sulfur-containing compounds, antioxidants, flavonoids, phytoestrogens, diterpenes, and polyphenols. Several of these agents, quercetin, ethoxyquin, and black tea, were found to strongly inhibit PhIP N-hydroxylation in rat liver microsomes, resulting in a nearly 85-90% decrease in activity at 100 microM or 0.2%. Tannic acid and green tea, in addition to these agents, were also strong inhibitors of ABP N-hydroxylation. In human liver microsomes, each of these agents was strongly inhibitory (approx 85-95% at 100 microM or 0.02%) of PhIP and ABP N-hydroxylation. Theaflavins and polyphenols were judged to be the primary inhibiting components in the teas, the theaflavins showing the most potent effect. These results demonstrate that chemoprotective agents can inhibit the bioactivation of carcinogenic arylamines, and this is likely to be one of the mechanisms of protection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.