During the early boreal winter (northeast) monsoon (November–December), cold air frequently bursts out from intense Siberian highs toward the Chinese coast in response to the development and movement of a 500-hPa trough. The resultant strong low-level northwesterlies turn into northeasterlies across the South China Sea as “cold surges.” On interacting with the near-equatorial trough, mesoscale convective systems form north of the trough, normally giving rise to heavy downpours and severe flooding, mainly along the coastal stretch in the east coast states of Peninsular Malaysia. In November 2014, a 1-week-long episode of heavy downpours, producing more than 800 mm of rain, occurred along the coastal stretch of northeastern Peninsular Malaysia. However, during December 2014, two episodes of extreme rainfall occurred mostly over inland and mountainous areas of the east coast of Peninsular Malaysia, in particular across its northern sector. These two unusual events, which lasted a total of 11 days and delivered more than 1100 mm of precipitation, resulted in extreme and widespread flooding, as well as extensive damage, in many inland areas. Analysis shows that the stronger wind surges from the South China Sea due to very intense cold-air outbreaks of the Siberian high developed under ENSO-neutral conditions. In addition, the mesoscale convective systems that developed across the northeastern Indian Ocean (near northern Sumatra) in response to the propagation of a 500-hPa short-wave trough across the Indian subcontinent toward China were the combined factors for these unusual extreme rainfall and flooding events along the east coast of Peninsular Malaysia.
Rapid urbanization of cities has greatly modified the thermal and dynamic profile in the urban boundary layer. This paper attempts to study the interaction of urban heating and the local topographic‐induced flow circulation for a tropical coastal city, Greater Kuala Lumpur, in Malaysia. The role of sea‐and‐valley‐breeze‐orientated synoptic flow (SBOS) on the interaction is determined by comparing two intermonsoon periods. A state‐of‐the‐art numerical model, Advanced Research Weather Research and Forecasting model, is used to identify the influence of urbanization through modification of urban surfaces. The model reasonably reproduces the vertical sounding data and near‐surface weather parameters. The diurnal urban heating pattern is attributed to three predominant factors: (i) weak under calm and clear‐sky condition (morning heating), (ii) weak under larger atmospheric moisture content (late afternoon convection), and (iii) largest (1.4°C) due to differential cooling rate of urban and rural surface at night. The interaction of urban thermals and upper level SBOS affects the effect of urbanization on local circulation during the day. The urban thermals reduce the weak opposing SBOS (<2 m s−1) and enhance the inflow of moisture‐rich sea breeze passage. This increases the intensity of downwind convective precipitation during late afternoon. On contrary, the strong opposing SBOS (>2 m s−1) suppresses the vertical lifting of urban thermals and decelerates the sea breeze front. It is discovered that the interaction of urban heating and topographic‐induced flow is interdependent while the synoptic flow plays a critical role in modifying both factors, respectively.
We carry out a case study of the transport and chemistry of bromoform and its product gases (PGs) in a sea breeze driven convective episode on 19 November 2011 along the North West coast of Borneo during the "Stratospheric ozone: Halogen Impacts in a Varying Atmosphere" (SHIVA) campaign. We use ground based, ship, aircraft and balloon sonde observations made during the campaign, and a 3-D regional online transport and chemistry model capable of resolving clouds and convection explicitly that includes detailed bromine chemistry. The model simulates the temperature, wind speed, wind direction fairly well for the most part, and adequately captures the convection location, timing, and intensity. The simulated transport of bromoform from the boundary layer up to 12 km compares well to aircraft observations to support our conclusions. The model makes several predictions regarding bromine transport from the boundary layer to the level of convective detrainment (11 to 12 km). First, the majority of bromine undergoes this transport as bromoform. Second, insoluble organic bromine carbonyl species are transported to between 11 and 12 km, but only form a small proportion of the transported bromine. Third, soluble bromine species, which include bromine organic peroxides, hydrobromic acid (HBr), and hypobromous acid (HOBr), are washed out efficiently within the core of the convective column. Fourth, insoluble inorganic bromine species (principally Br2) are not washed out of the convective column, but are also not transported to the altitude of detrainment in large quantities. We expect that Br2 will make a larger relative contribution to the total vertical transport of bromine atoms in scenarios with higher CHBr3 mixing ratios in the boundary layer, which have been observed in other regions. Finally, given the highly detailed description of the chemistry, transport and washout of bromine compounds within our simulations, we make a series of recommendations about the physical and chemical processes that should be represented in 3-D chemical transport models (CTMs) and chemistry climate models (CCMs), which are the primary theoretical means of estimating the contribution made by CHBr3 and other very short-lived substances (VSLS) to the stratospheric bromine budget
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.