The system studied here consists of a non‐rotating cylinder sliding inside a fully lubricated parallel track with a prescribed longitudinal velocity, carrying a transverse load (normal to the track). Reynolds equations are used for the particular case of a non‐rotating sliding cylinder in a fully lubricated track. Two short‐bearing mobility charts are developed for a normalized clearance track (equivalent to those developed by Booker for journal‐bearings). Pressure distributions around the cylinder and motion paths within the clearance track are produced for prescribed transverse loading and longitudinal speed requirements for hydrodynamic analysis purposes. Numerical application examples are presented for general and specific cases at the end.
In this paper a new method for the hydrodynamic analysis of a sliding cylinder in a lubricated parallel track is presented. The method is an extension of Booker’s “Mobility Method” (developed for cylindrical journal bearings) for the case of a non‐rotating sliding cylinder in a parallel track. In this application, the clearance between the track and the cylinder, the viscosity of the lubricant, the radius and length of the pin, the sliding velocity and the applied transverse load determine the hydrodynamic behavior of the slider cylinder. An axial positive displacement vane device is used to illustrate the applicability of the hydrodynamic mobility approach for a lubrication analysis. A rotor and a stationary cylindrical cam with cycloidal tracks drive the axicycloidal motion of vanes. A case analysis is presented for a device running at constant speed, in which the inertia forces, friction forces and direct vane loads are taken into account to determine the hydrodynamic behavior of the sliding pins. The following results are produced: pin eccentricity paths, minimum lubricant film thickness history, peak film pressure history and pressure distributions on the cylindrical at any point of the motion. Results show small departures from the purely cycloidal lift‐dwell‐return‐dwell motion of the vanes due to the hydrodynamic performance of the pins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.