Objective: Voltammetric procedure for analysis of pharmaceutical formulation of ibuprofen on conducting polyaniline nanofiber modified glassy carbon electrode was explored. Methods:The effect of pH was studied at different medium such as acidic, neutral and basic. The cyclic voltammetric behavior of ibuprofen was studied between−0.5 V and 1.8 V versus Ag/AgCl at modified glassy carbon surface. Results:The electroanalytical parameters of the detection are highly dependent on their configuration and dimensions of the electrode. The scan rate and concentration effect of ibuprofen were studied. The best limit of detection was 100 ppb and the linear range from 200 to 400 ppb on the modified electrode surface. The determination was successfully applied for the detection of drugs in several pharmaceutical drug formulations. The Atomic force microscopic (AFM) image shows the surface morphologies of polymer modified surface; compound adsorbed surface, particle distribution graphs and surface roughness values, which are in good agreement. Conclusion:The anodic peak was observed at 1.63 V, assigned for the oxidation of ibuprofen, which is not accompanied by corresponding cathodic reduction. This behavior suggested that the irreversibility of the electrode process.
Background Antioxidant and antihistamine agents from Barleria noctiflora L.f. as natural source due to the existing modern medicine give various adverse effects to overcome these problems with natural products. MethodsB. noctiflora leaves extract was fractionated with column chromatography; the homogenized fractions were monitored with thin layer chromatography (TLC) and characterized by using UV-visible, FT-IR, 1H NMR, 13C NMR and mass spectrometry spectral studies. The volatile phytoconstituents of B. noctiflora extract were analysed by gas chromatography-mass spectrometry. Phytoconstituents from B. noctiflora leaves extract were screened for their antioxidant and antihistamine potential in vitro (2,2-diphenyl-1-picrylhydrazyl radical scavenging activity, 2,2'-azinobis-3-ethylbenzothiozoline-6-sulfonic acid radical decolouration assay, nitric oxide radical scavenging activity, superoxide radical scavenging activity and hydrogen peroxide radical scavenging activity) and in silico (molecular docking), respectively. Results Antioxidant and antihistamine barlerinoside has been isolated and characterized from the leaves of B. noctiflora L.f. Barlerinoside revealed their free-radical scavenging ability on OH-, OH•, NO-, O2- and H2O2 radicals and found high percentage inhibition against OH- radical at the IC50 value of 50.45±2.52 µg. The methanol (MeOH) extract of B. noctiflora leaves contains cyclotene; N,N-dimethylglycine; tetrahydrocyclopenta [1,3] dioxin-4-one; phenol, 2-methoxy-; benzofuran, 2-methyl-; 1,4:3,6-dianhydro-α-d-glucopyranose; 2-methoxy-4-vinylphenol; 1,3;2,5-dimethylene-l-rhamnitol; levoglucosan and bicyclo[2.2.2]oct-7-ene-2,5-dione as being the major compounds. Among phytoconstituents present in the extract, the hexestrol; 1,2-benzenedicarboxylic acid, bis(2-methylpropyl) ester; 1-(3,6,6-trimethyl-1,6,7,7a-tetrahydrocyclopenta[c]pyran-1-yl) ethanone; megastigmatrienone; furan interacted with histamine H1 receptor and bind at GLU-177 and ASP-178 with high binding energy score -13.95, -13.41, -12.56, -12.03, and -11.72 kcal/mol, respectively, and the expected hydrolysed products of compound-1a and compound-1b from barlerinoside showed -8.91 and -8.68 kcal/mol binding energy against the histamine H1 receptor. This showed that the active ligands exactly bind with active binding site of the protein. ConclusionsWe can conclude that isolated barlerinoside from B. noctflora L.f. has potent antioxidant activity against synthetic free radicals and antihistamine activity against histamine H1 receptor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.