Poly(lactic acid) (PLA) has great potentials to be processed into films for packaging applications. However, film production is difficult to carry out due to the brittleness and low melt strength of PLA. In this investigation, linear PLA (L‐PLA) was plasticized with poly(ethylene glycol) (PEG) having MW of 1000 g mol−1 in various PEG concentrations (0, 5, 10, 15, and 20 wt%). In relation to plasticizer content, the impact resistance and crystallinity of L‐PLA was increased, whereas a decrease in glass transition temperature and lower stiffness was observed. Nevertheless, the phase separation has been found in samples which contained PEG greater than 10 wt%. The dynamic and shear rheological studies showed that the plasticized PLA possessed lower viscosity and more pronounced elastic properties than that of pure PLA. Both storage and loss moduli decreased with PEG loading at all frequencies while storage modulus exhibited weak frequency dependence with increasing PEG content. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers
This paper investigates the structural changes of polyvinyl chloride (PVC) in melt‐blends of a low‐density polyethylene (LDPE) and polyvinyl chloride (PVC), and the effects of LDPE content and number of extrusion passes. These effects were examined in terms of changes in weight average molecular weight and number average molecular weight, polyene and carbonyl indices, color changes of the blend, and the variations in glass transition and decomposition temperatures. It was found that loading LDPE into PVC led to the formation of short‐chain LDPE grafted PVC (s‐LDPE‐g‐PVC) copolymers, via a macro‐radical cross‐recombination reaction, which had greater weight average molecular weight with unchanged number average molecular weight, increased decomposition temperature, lower glass transition temperature, as compared to the pure PVC sample. The dehydrochlorination reaction of PVC was suppressed by the macro‐radical cross‐recombination reaction with addition of LDPE, the effect being more pronounced at 13.0 wt% LDPE. For a given LDPE content, the macro‐radical cross‐recombination and dehydrochlorination reactions competed with one another, thus causing the increases in molecular weight average and molecular weight number up to the 4th extrusion pass. At the 5th extrusion pass, the dehydrochlorination reaction was predominant owing to a depletion of LDPE content to be grafted onto PVC molecular chains. The glass transition and decomposition temperature decreased with increasing number of extrusion passes. Polym. Eng. Sci. 44:487–495, 2004. © 2004 Society of Plastics Engineers.
ABSTRACT:The processability, rheology, and thermal, mechanical, and morphological properties of three different commercial poly(vinyl chloride) (PVC) compounds blended with postconsumer PVC bottles and PVC cables were examined with respect to the recycled PVC content. The addition of PVC bottle recyclates [recycled bottles (RBs)] into virgin PVC bottle (VB) and virgin PVC pipe (VP) compounds caused a progressive reduction in the average torque. No thermal degradation or color change in the RB-blended PVC compounds used was detected through carbonyl and polyene indices from IR analysis. The rheological properties for VP compounds were more sensitive to RB addition than those of VB compounds. The extrudate swell ratio did not change with the RB content. The decomposition temperature for the VB and VP compounds increased at 60 -80% RB, whereas the glass-transition temperature was unaffected by the RB loading. The 20 and 80 wt % RB loadings were recommended for the VB and VP compounds, respectively, for the optimum impact strength, the blends showing ductile fracture with a continuous phase. At the optimum impact and tensile properties, introducing RB recyclates into the VB compounds gave better results than the VP compounds. The hardness and density of the VB and VP compounds did not change with the RB content. The RB property change was comparatively faster than that of recycled PVC pipes. Adding the PVC cable recyclate [recycled cable (RC)] to virgin PVC cable (VC) had no obvious effect on the torque value of the RC/VC blends. The decomposition temperatures of the RC/VC blends stabilized at 20 -60% RC and tended to decrease at 80% RC. The ultimate tensile stress was improved by the addition of the RC compounds, whereas the hardness and density of the VC compounds were unaffected by the RC content. It was concluded that the optimum concentrations of PVC recyclates to be added to virgin PVC compounds were different from one property to another and also depended on the type of virgin PVC grade used.
Gel permeation chromatography (GPC) and solid-state 13 C-NMR techniques were used to analyze the structural changes of poly(vinyl chloride) (PVC) in blends of a low-density polyethylene (LDPE) and PVC during melt blending. The GPC results showed that the weight-average molecular weight (M w ) of PVC increased with LDPE content up to 13.0 wt % and then decreased at a LDPE content of 16.7 wt %, whereas the number-average molecular weight remained unchanged for all of LDPE contents used. The 13 C-NMR results suggest that the increase in M w was associated with the formation of a LDPE-g-PVC structure, resulting from a PVC and LDPE macroradical cross-recombination reaction during melt blending.
ABSTRACT:The structural changes and mechanical performance of virgin poly(vinyl chloride) (PVC) bottle (VB) compounds blended with postconsumer PVC bottles collected from a specified factory (RB-F) and houses (RB-H), were examined before and after UV irradiation at 313-nm UV wavelength for different periods of time up to 28 days. The results indicated that, when exposed to UV light, the RB-F/VB blends containing greater conjugated double bonds with higher yellowness index appeared to exhibit better mechanical performance than that of the RB-H/VB blends. It was found that the amount of conjugated double bonds was not a linear function of the discoloration level of PVC compounds. Tensile strength of the VB compounds was not affected when incorporated with RB-F recyclate, but progressively decreased with increasing RB-H recyclate. An optimum concentration for RB recyclates to be added into the virgin compound was recommended for obtaining a maximum impact strength. Both tensile and impact strengths decreased with increasing UV exposure time, a severe degradation being obvious after a UV exposure time of 21 days. Hardness was not affected significantly by the addition of PVC recyclate, but increased with increasing UV exposure time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.