Abstract. The coastal ocean is a crucial link between land, the open ocean and the atmosphere. The shallowness of the water column permits close interactions between the sedimentary, aquatic and atmospheric compartments, which otherwise are decoupled at long time scales ( ∼ =1000 yr) in the open oceans. Despite the prominent role of the coastal oceans in absorbing atmospheric CO 2 and transferring it into the deep oceans via the continental shelf pump, the underlying mechanisms remain only partly understood. Evaluating observations from the North Sea, a NW European shelf sea, we provide evidence that anaerobic degradation of organic matter, fuelled from land and ocean, generates total alkalinity (A T ) and increases the CO 2 buffer capacity of seawater. At both the basin wide and annual scales anaerobic A T generation in the North Sea's tidal mud flat area irreversibly facilitates 7-10%, or taking into consideration benthic denitrification in the North Sea, 20-25% of the North Sea's overall CO 2 uptake. At the global scale, anaerobic A T generation could be accountable for as much as 60% of the uptake of CO 2 in shelf and marginal seas, making this process, the anaerobic pump, a key player in the biological carbon pump. Under future high CO 2 conditions oceanic CO 2 storage via the anaerobic pump may even gain further relevance because of stimulated ocean productivity.
[1] New observations from the North Sea, a NW European shelf sea, show that between 2001 and 2005 the CO 2 partial pressure (pCO 2 ) in surface waters rose by 22 matm, thus faster than atmospheric pCO 2 , which in the same period rose approximately 11 matm. The surprisingly rapid decline in air-sea partial pressure difference (DpCO 2 ) is primarily a response to an elevated water column inventory of dissolved inorganic carbon (DIC), which, in turn, reflects mostly anthropogenic CO 2 input rather than natural interannual variability. The resulting decline in the buffering capacity of the inorganic carbonate system (increasing Revelle factor) sets up a theoretically predicted feedback loop whereby the invasion of anthropogenic CO 2 reduces the ocean's ability to uptake additional CO 2 . Model simulations for the North Atlantic Ocean and thermodynamic principles reveal that this feedback should be stronger, at present, in colder midlatitude and subpolar waters because of the lower present-day buffer capacity and elevated DIC levels driven either by northward advected surface water and/or excess local air-sea CO 2 uptake. This buffer capacity feedback mechanism helps to explain at least part of the observed trend of decreasing air-sea DpCO 2 over time as reported in several other recent North Atlantic studies.
[1] We report a data set of dissolved inorganic carbon (DIC) obtained during three cruises in the northern Bay of Biscay carried out in June 2006, May 2007, and May 2008. During these cruises, blooms of the coccolithophore Emiliania huxleyi occurred, as indicated by patches of high reflectance on remote sensing images, phytoplankton pigment signatures, and microscopic examinations. Total alkalinity showed a nonconservative behavior as a function of salinity due to the cumulative effect of net community calcification (NCC) on seawater carbonate chemistry during bloom development. The cumulative effect of NCC and net community production (NCP) on DIC and the partial pressure of CO 2 (pCO 2 ) were evaluated. The decrease of DIC (and increase of pCO 2 ) due to NCC was overwhelmingly lower than the decrease of DIC (and decrease of pCO 2 ) due to NCP (NCC:NCP ( 1). During the cruises, the northern Bay of Biscay acted as a sink of atmospheric CO 2 (on average ∼−9.7 mmol C m −2 d −1 for the three cruises). The overall effect of NCC in decreasing the CO 2 sink during the cruises was low (on average ∼12% of total air-sea CO 2 flux). If this is a general feature in naturally occurring phytoplankton blooms in the North Atlantic Ocean (where blooms of coccolithophores are the most intense and recurrent), and in the global ocean, then the potential feedback on increasing atmospheric CO 2 of the projected decrease of pelagic calcification due to thermodynamic CO 2 "production" from calcification is probably minor compared to potential feedbacks related to changes of NCP.
Abstract. The coastal ocean constitutes the crucial link between land, the open ocean and the atmosphere. Furthermore, its shallow water column permits close interactions between the sedimentary and atmospheric compartments, which otherwise are decoupled at short time scales (<1000 yr) in the open oceans. Despite the prominent role of the coastal oceans in absorbing atmospheric CO2 and transferring it into the deep oceans via the continental shelf pump, the underlying mechanisms remain only partly understood. Evaluating observations from the North Sea, a NW European shelf sea, we provide evidence that anaerobic degradation of organic matter, fuelled from land and ocean, generates alkalinity (AT) and increases the CO2 buffer capacity of seawater. At both the basin wide and annual scales anaerobic AT generation in the North Sea's tidal mud flat area irreversibly facilitates 7–10%, or taking into consideration benthic denitrification in the North Sea, 20–25% of the North Sea's overall CO2 uptake. At the global scale, anaerobic AT generation could be accountable for as much as 60% of the uptake of CO2 in shelf and marginal seas, making this process, the anaerobic pump, a key player in the biological carbon pump. Under future high CO2 conditions oceanic CO2 storage via the anaerobic pump may even gain further relevance because of stimulated ocean productivity.
A dynamic model has been developed to represent biogeochemical variables and processes observed during experimental blooms of the coccolithophore Emiliania huxleyi induced in mesocosms over a period of 23 days. The model describes carbon (C), nitrogen (N), and phosphorus (P) cycling through E. huxleyi and the microbial loop, and computes pH and the partial pressure of carbon dioxide (pCO 2 ) from dissolved inorganic carbon (DIC) and total alkalinity (TA). The main innovations are: 1) the representation of E. huxleyi dynamics using an unbalanced growth model in carbon and nitrogen, 2) the gathering of formulations describing typical processes involved in the export of carbon such as primary production, calcification, cellular dissolved organic carbon (DOC) excretion, transparent exopolymer (TEP) formation and viral lyses, and 3) an original and validated representation of the calcification process as a function of the net primary production with a modulation by the intra-cellular N:C ratio mimicking the effect of nutrients limitation on the onset of calcification. It is shown that this new mathematical formulation of calcification provides a better representation of the dynamics of TA, DIC and calcification rates derived from experimental data compared to classicaly used formulations (e.g. function of biomass or of net primary production without any modulation term). In a first step, the model has been applied to the simulations of present pCO 2 conditions. It adequately reproduces the observations for chemical and biological variables and provides an overall view of carbon and nitrogen dynamics. Carbon and nitrogen budgets are derived from the model for the different phases of the bloom, highlighting three distinct phases, reflecting the evolution of the cellular C:N ratio and the interaction between hosts and viruses. During the first phase, inorganic nutrients are massively consumed by E. huxleyi increasing its biomass. Uptakes of carbon and nitrogen are maintained at a constant ratio. The second phase is triggered by the exhaustion of phosphate (PO 4 3− ). Uptake of carbon and nitrogen being uncoupled, the cellular C:N ratio of E. huxleyi increases. This stimulates the active release of DOC, acting as precursors for TEP. The third phase is characterised by an enhancement of the phytoplankton mortality due to viral lysis. A huge amount of DOC has been accumulated in the mesocosm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.