The present study makes use of the unprecedented capability of the Gaia mission to obtain the stellar parameters such as distance, age, and mass of HAeBe stars. The accuracy of Gaia DR2 astrometry is demonstrated from the comparison of the Gaia DR2 distances of 131 HAeBe stars with the previously estimated values from the literature. This is one of the initial studies to estimate the age and mass of a confirmed sample of HAeBe stars using both the photometry and distance from the Gaia mission. Mass accretion rates are calculated from Hα line flux measurements of 106 HAeBe stars. Since we used distances and the stellar masses derived from the Gaia DR2 data in the calculation of mass accretion rate, our estimates are more accurate than previous studies. The mass accretion rate is found to decay exponentially with age, from which we estimated a disk dissipation timescale of 1.9 ± 0.1 Myr. Mass accretion rate and stellar mass exhibits a power law relation of the form,Ṁ acc ∝ M 2.8±0.2 * . From the distinct distribution in the values of the infrared spectral index, n 2−4.6 , we suggest the possibility of difference in the disk structure between Herbig Be and Herbig Ae stars.
The physical processes related to the effect of bar in the quenching of star formation in the region between the nuclear/central sub-kpc region and the ends of the bar (bar-region) of spiral galaxies is not fully understood. It is hypothesized that the bar can either stabilize the gas against collapse, inhibiting star formation or efficiently consume all the available gas, with no fuel for further star formation. We present a multi-wavelength study using the archival data of an early-type barred spiral galaxy, Messier 95, which shows signatures of suppressed star formation in the bar-region. Using the optical, ultraviolet, infrared, CO and HI imaging data we study the pattern of star formation progression, stellar/gas distribution and try to provide insights on the process responsible for the observed pattern. The FUV-NUV pixel colour map reveals a cavity devoid of UV flux in the bar-region that interestingly matches with the length of the bar (∼ 4.2 kpc). The central nuclear region of the galaxy is showing a blue color clump and along the major-axis of the stellar bar the colour progressively becomes redder. Based on a comparison to single stellar population models, we show that the region of galaxy along the major-axis of the bar (unlike the region outside the bar) is comprised of stellar populations with ages ≥ 350 Myr, with a star-forming clump in the center of younger ages (∼ 150Myr). Interestingly the bar-region is also devoid of neutral and molecular hydrogen but with an abundant molecular hydrogen present at the nuclear region of the galaxy. Our results are consistent with a picture in which the stellar bar in Messier 95 is redistributing the gas by funneling gas inflows to nuclear region, thus making the bar-region devoid of fuel for star formation.
Mennickent et al. and Sabogal et al. identified a large number of classical Be (CBe) candidates (∼3500) in the Large and Small Magellanic Clouds (LMC and SMC) based on their photometric variability using the OGLE II data base. They classified these stars into four different groups based on the appearance of their variability. In order to refine and understand the nature of this large number of stars, we studied the infrared properties of the sample and the spectroscopic properties of a subsample. We cross‐correlated the optical sample with the IRSF‐MCPS catalogue to obtain the J, H, Ks magnitudes of all the four types of stars (∼2500) in the LMC and SMC. Spectra of 120 stars belonging to the types 1, 2 and 3 were analysed to study their spectral properties. Among the four types, the type 4 stars are the dominant group, with ∼60 and ∼65 per cent of the total sample in the LMC and SMC, respectively. The near‐infrared (NIR) colour–colour diagrams suggest that the type 4 stars in the LMC have a subclass, which is not found in our Galaxy or in the SMC. This subclass is ∼18 per cent of the type 4 sample. The main type 4 sample which is ∼49 per cent of the total sample has NIR properties similar to the Galactic CBe stars and the SMC type 4 stars. Though the new subclass of type 4 stars have high E(B−V) ∼ 0.75, they are not located close to regions with high reddening. The type 3 stars (∼6 per cent and 7.3 per cent in the LMC and SMC) are found to have large Hα equivalent width (EW) in the SMC and some are found to have large NIR excess. This small fraction of stars are unlikely to be CBe stars. Three stars among the type 3 stars in the LMC are found to be double periodic variables. The type 2 stars are found in larger fraction in the SMC (∼14.5 per cent), when compared to the LMC (∼6 per cent). The spectroscopic and the NIR properties suggest that these could be CBe stars. The type 1 stars are relatively more in the LMC (∼24 per cent) when compared to the SMC (∼13 per cent). The SMC type 1 stars have relatively large Hα EW and this class has properties similar to CBe stars. The spectroscopic sample of type 1 stars which show Hα in emission and are confirmed as CBe stars are more abundant in the SMC by a factor of 2.6. If the effect of metallicity is to cause more CBe stars in the SMC, when compared to the LMC, then type 1, type 2 and type 4 stars follow this rule, with an enhancement of 2.6, 2.4 and 1.3, respectively.
The suppression of star formation in the inner kiloparsec regions of barred disk galaxies due to the action of bars is known as bar quenching. We investigate here the significance of bar quenching in the global quenching of star formation in the barred galaxies and their transformation to passive galaxies in the local Universe. We do this by measuring the offset of quenched barred galaxies from star-forming main sequence galaxies in the star formation rate-stellar mass plane and comparing it with the length of the bar, which is considered as a proxy of bar quenching. We constructed the star formation rate-stellar mass plane of 2885 local Universe face-on strong barred disk galaxies (z < 0.06) identified by Galaxy Zoo. The barred disk galaxies studied here fall on the star formation main sequence relation with a significant scatter for galaxies above stellar mass 10 10.2 M . We found that 34.97 % galaxies are within the intrinsic scatter (0.3 dex) of the main sequence relation, with a starburst population of 10.78 % (above the 0.3 dex) and a quenched population of 54.25 % (below the -0.3 dex) of the total barred disk galaxies in our sample. Significant neutral hydrogen (M HI >10 9 M with log M HI /M ∼ -1.0 to -0.5) is detected in the quenched barred galaxies with a similar gas content to that of the star-forming barred galaxies. We found that the offset of the quenched barred galaxies from the main sequence relation is not dependent on the length of the stellar bar. This implies that the bar quenching may not contribute significantly to the global quenching of star formation in barred galaxies. However, this observed result could also be due to other factors such as the dissolution of bars over time after star formation quenching, the effect of other quenching processes acting simultaneously, and/or the effects of environment.
We have investigated the role of a few prominent excitation mechanisms viz. collisional excitation, recombination, continuum fluorescence and Lyman beta fluorescence on the O i line spectra in Herbig Ae/Be stars. The aim is to understand which of them is the central mechanism that explains the observed O i line strengths. The study is based on an analysis of the observed optical spectra of 62 Herbig Ae/Be stars and near-infrared spectra of 17 Herbig Ae/Be stars. The strong correlation observed between the line fluxes of O i λ8446 and O i λ11287, as well as a high positive correlation between the line strengths of O i λ8446 and Hα suggest that Lyman beta fluorescence is the dominant excitation mechanism for the formation of O i emission lines in Herbig Ae/Be stars. Further, from an analysis of the emission line fluxes of O i λλ7774, 8446, and comparing the line ratios with those predicted by theoretical models, we assessed the contribution of collisional excitation in the formation of O i emission lines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.