We have demonstrated CW one-micron laser oscillation in new ceramic laser material on the base of cubic Nd3+:Y2O3. Slope efficiency of 32% was achieved on an uncoated 1.5 at.% Nd3+:Y2O3 ceramic plate with size of φ14 ×2.7 mm under laser diode end-pumping.
A high-power continuous-wave polycrystalline 1% Nd:Y3Al5O12 (Nd:YAG) ceramic rod laser was demonstrated. With 290 W/808 nm laser diode pumping, cw laser output of 72 W was obtained at 1064 nm. The optical-to-optical conversion efficiency is 24.8%. Thermally induced birefringence properties of Nd:YAG ceramic was also investigated.
A solid-state laser material based on highly transparent cubic Nd3+:Lu2O3 ceramic was developed using nanocrystalline technology and a nonpress vacuum sintering method. Spectroscopic properties of this ceramic laser material were investigated. At room temperature under single-laser diode pumping, efficient continuous wave laser oscillation was demonstrated at two wavelengths of the 4F3/2→4I11/2 channel. The potential application of such a laser material was also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.