We observe extremely large amplitude intermittent spikings in a dynamical variable of a periodically forced Liénard-type oscillator and characterize them as extreme events, which are rare, but recurrent and larger in amplitude than a threshold. The extreme events occur via two processes, an interior crisis and intermittency. The probability of occurrence of the events shows a long-tail distribution in both the cases. We provide evidence of the extreme events in an experiment using an electronic analog circuit of the Liénard oscillator that shows good agreement with our numerical results.
In this paper, we present the hyperchaos dynamics of a modified canonical Chua's electrical circuit. This circuit, which is capable of realizing the behavior of every member of the Chua's family, consists of just five linear elements (resistors, inductors and capacitors), a negative conductor and a piecewise linear resistor. The route followed is a transition from regular behavior to chaos and then to hyperchaos through border-collision bifurcation, as the system parameter is varied. The hyperchaos dynamics, characterized by two positive Lyapunov exponents, is described by a set of four coupled first-order ordinary differential equations. This has been investigated extensively using laboratory experiments, Pspice simulation and numerical analysis.
We present a detailed investigation of the rich variety of bifurcations and chaos associated with a very simple nonlinear parallel nonautonomous LCR circuit with Chua's diode as its only nonlinear element as briefly reported recently [Thamilmaran et al., 2000]. It is proposed as a variant of the simplest nonlinear nonautonomous circuit introduced by Murali, Lakshmanan and Chua (MLC) [Murali et al., 1994]. In our study we have constructed two-parameter phase diagrams in the forcing amplitude-frequency plane, both numerically and experimentally. We point out that under the influence of a periodic excitation a rich variety of bifurcation phenomena, including the familiar period-doubling sequence, intermittent and quasiperiodic routes to chaos as well as period-adding sequences, occur. In addition, we have also observed that the periods of many windows satisfy the familiar Farey sequence. Further, reverse bifurcations, antimonotonicity, remerging chaotic band attractors, and so on, also occur in this system. Numerical simulation results using Poincaré section, Lyapunov exponents, bifurcation diagrams and phase trajectories are found to be in agreement with experimental observations. The chaotic dynamics of this circuit is observed experimentally and confirmed both by numerical and analytical studies as well PSPICE simulation results. The results are also compared with the dynamics of the original MLC circuit with reference to the two-parameter space to show the richness of the present circuit.
We have identified the three prominent routes, namely Heagy-Hammel, fractalization and intermittency routes, and their mechanisms for the birth of strange nonchaotic attractors (SNAs) in a quasiperiodically forced electronic system constructed using a negative conductance series LCR circuit with a diode both numerically and experimentally. The birth of SNAs by these three routes is verified from both experimental and their corresponding numerical data by maximal Lyapunov exponents, and their variance, Poincaré maps, Fourier amplitude spectrum, spectral distribution function and finite-time Lyapunov exponents. Although these three routes have been identified numerically in different dynamical systems, the experimental observation of all these mechanisms is reported for the first time to our knowledge and that too in a single second order electronic circuit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.