Nuclear protein in testis (NUT)-midline carcinoma (NMC) is a rare, aggressive disease typically presenting with a single t(15;19) translocation that results in the generation of a bromodomain-containing protein 4 (BRD4)-NUT fusion. PER-624 is a cell line generated from an NMC patient with an unusually complex karyotype that gave no initial indication of the involvement of the NUT locus. Analysis of PER-624 next-generation transcriptome sequencing (RNA-Seq) using the algorithm FusionFinder identified a novel transcript in which Exon 15 of BRD4 was fused to Exon 2 of NUT, therefore differing from all published NMC fusion transcripts. The three additional exons contained in the PER-624 fusion encode a series of polyproline repeats, with one predicted to form a helix. In the NMC cell line PER-403, we identified the 'standard' NMC fusion and two novel isoforms. Knockdown by small interfering RNA in either cell line resulted in decreased proliferation, increased cell size and expression of cytokeratins consistent with epithelial differentiation. These data demonstrate that the novel BRD4-NUT fusion in PER-624 encodes a functional protein that is central to the oncogenic mechanism in these cells. Genomic PCR indicated that in both PER-624 and PER-403, the translocation fuses an intron of BRD4 to a region upstream of the NUT coding sequence. Thus, the generation of BRD4-NUT fusion transcripts through post-translocation RNA-splicing appears to be a common feature of these carcinomas that has not previously been appreciated, with the mechanism facilitating the expression of alternative isoforms of the fusion. Finally, ectopic expression of wild-type NUT, a protein normally restricted to the testis, could be demonstrated in PER-403, indicating additional pathways for aberrant cell signaling in NMC. This study contributes to our understanding of the genetic diversity of NMC, an important step towards finding therapeutic targets for a disease that is refractory to current treatments.
The hallmarks of many haematological malignancies and solid tumours are chromosomal translocations, which may lead to gene fusions. Recently, next-generation sequencing techniques at the transcriptome level (RNA-Seq) have been used to verify known and discover novel transcribed gene fusions. We present FusionFinder, a Perl-based software designed to automate the discovery of candidate gene fusion partners from single-end (SE) or paired-end (PE) RNA-Seq read data. FusionFinder was applied to data from a previously published analysis of the K562 chronic myeloid leukaemia (CML) cell line. Using FusionFinder we successfully replicated the findings of this study and detected additional previously unreported fusion genes in their dataset, which were confirmed experimentally. These included two isoforms of a fusion involving the genes BRK1 and VHL , whose co-deletion has previously been associated with the prevalence and severity of renal-cell carcinoma. FusionFinder is made freely available for non-commercial use and can be downloaded from the project website ( http://bioinformatics.childhealthresearch.org.au/software/fusionfinder/ ).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.