Twenty-seven grapevine (Vitis vinifera L.) varieties within 12 putative berry colour variation groups (conculta) were genotyped with 14 highly polymorphic microsatellite (simple sequence repeats (SSR)) markers. Three additional oligonucleotide primers were applied for the detection of the Gret1 retroelement insertion in the promoter region of VvMybA1 transcription factor gene regulating the UFGT (UDP-glucose: flavonoid 3-O-glucosyltransferase) activity. UFGT is the key enzyme of the anthocyanin biosynthetic pathway. SSR results proved that the analysed cultivars can be grouped only into nine concultas, the other three putative berry colour variant groups consist of homonyms as a consequence of misnaming. In the case of Sárfehér-Sárpiros, Delaware red-Delaware white and Járdovány fekete-Járdovány fehér, it was attested that they are not bud sports, but homonyms. Some conculta members could be differentiated according to the presence or the absence of the Gret1 retroelement (Chasselas, Furmint and Lisztes), while others, Bajor, Bakator, Gohér and Traminer conculta members, remained indistinguishable either by the microsatellites or the Gret1-based method.
The aim of this paper was to find possible link between molecular and morphological similarities of 38 Hungarian white grape varieties. Three aspects of morphological and molecular similarity were assessed in the study: comparison of the ordered variety pairs, assessment of molecular and morphological mean similarity differences and separation of varieties into similar groups by divisive cluster analysis to define (DIANA). Molecular similarity was calculated from binary data based on allele sizes obtained in DNA analysis. DNA fingerprints were determined at 9 SSR loci recommended by the European GrapeGen06 project. Morphological similarity was calculated on the basis of quantitative morphological descriptors. Morphological and molecular similarity values were ordered and categorized after pairwise comparison. Overall correlation was found to be weak but case by case assessment of the variety pairs confirmed some coincidence of molecular and morphological similarity. General similarity position of each variety was characterized by Mean Similarity Index (MSI). It was calculated as the mean of n-1 pair similarity values of the variety concerned. Varieties were ordered and compared by the difference of the index. Five varieties had low morphological and high molecular MSI meaning that they share several SSR marker alleles with the others but seems relatively distinct according to the expression of their morphological traits. Divisive cluster analysis was carried out to find similar groups. Eight and twelve cluster solutions proved to be sufficient to distinct varieties. Morphological and molecular similarity groups partly coincided according to the results. Several clusters reflected parent offspring relations but molecular clustering gave more realistic results concerning pedigree.
For quantification of genetic variations occurring in plant tissue cultures, DNA sequence alterations and repliconsize changes were monitored through subsequent phases of the model carrot tissue culture system, from the 2,4-D-induced proembryiogenic cell cultures to regenerated plantlets, by RAPD and flow cytometry techniques. Banding patterns of random amplified DNA fragments and ploidy-level distributions of cultured cells were significantly different in the presence and in the absence of 2,4-D. In addition, there were marked differences between the cells induced with lower (1.0 mg/l) and higher (2.5 mg/l) doses of 2,4-D. Among those samples that were cultured in the absence of 2,4-D, the epicotyl (C2), hypocotyl control (H1) and the morphologically normal regenerants (IV2) showed identical banding patterns overlapping with the true-to-type seedling controls (N1, N2). In contrast, treatment of starting explants (H2) with 1.0 mg/l 2,4-D resulted in a marked 82% increase in the number of amplified fragments associated with an appearance of cell lines possessing unusual haploid-like and aneuploid-like DNA contents. The induction with 2.5 mg/l 2,4-D resulted in even greater increase in the number of DNA fragments (~100%) amplified from proembryiogenic cell cultures, while it had no further effect on ploidiy-level distributions compared to the treatment with 1.0 mg/l 2,-D. After the withdrawal of the synthetic auxin, banding patterns and ploidy-level distributions were gradually shifted back to the levels of controls resulting in true-to-type regenerants. Conclusions are in short, the combined use of RAPD and flow cytometry can make quantification of genetic variations typical of dedifferentiated plant cells possible. Quantification opens the window for comprehensive evaluation of different methods, treatments and bioactive compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.