Reliability and longevity comprise two of the most important concerns when designing Microelectromechanical (MEM) switches. Forcing the switch to perform close to its operating limits underlies a trade-off between response bandwidth and fatigue life due to the impact force of the cantilever touching its corresponding contact point. This paper presents for first time an actuation pulse optimization technique based on Taguchi's optimization method to optimize the shape of the actuation pulse of an ohmic RF-MEMS switch in order to achieve better control and switching conditions. Simulation results show significant reduction in impact velocity (which results in less than 5 times impact force than nominal step pulse conditions) and settling time maintaining good switching speed for the pull down phase and almost elimination of the high bouncing phenomena during the release phase of the switch.
This paper presents Taguchi's optimization method implemented in the design of a single feed (without any matching network) microstrip antenna array operating around 12.5 GHz. The proposed optimization method is statistical and is widely used for quality assurance in many fields such as mechanical and chemical production, consumer electronics, services; however it has been underused in the field of electromagnetics. It allows optimization of multiparameter, multitarget complex designs in a very short time in conjunction with advanced simulation tools. The proposed antenna has been fully evaluated under Taghuchi's and PSO's optimization methods, and the experimental results show total Gain of 15 dB, and good matching withS11 better than 20 dB, in the frequency range 12.3 to 12.8 GHz.
Copyright @ 2010 Springer-VerlagThe analysis, design and simulation of a novel easy to control all-metal in-line-series ohmic RF MEMS switch is presented, for applications where the operating frequency ranges from DC to 4 GHz. The proposed switch, due to its unique shape and size, assures high isolation and great linearity fulfilling the necessary requirements as concerns loss, power handling and power consumption. Simplicity has been set as the key success factor implying robustness and high fabrication yield. On the other hand, the specially designed cantilever-shape (hammerhead) allows distributed actuation force ensuring high controllability as well as reliability making the presented RF MEMS switch one of its kind
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.