The sulfur-binding protein of Thiobacillus ferrooxidans ATCC 23270 was investigated. The protein composition of the bacterium's cell surface changed according to the culture substrate. Sulfur-grown cells showed greater adhesion to sulfur than iron-grown cells. The sulfur-grown cells synthesized a 40-kDa surface protein which was not synthesized by iron-grown cells. The 40-kDa protein had thiol groups and strongly adhered to elemental sulfur powder. This adhesion was not disturbed by Triton X-100, which can quench hydrophobic interactions. However, adhesion was disturbed by 2-mercaptoethanol, which broke the disulfide bond. The thiol groups of the 40-kDa protein formed a disulfide bond with elemental sulfur and mediated the strong adhesion between T. ferrooxidans cells and elemental sulfur. The 40-kDa protein was located on the flagella. The location of the protein would make it possible for cells to be in closer contact with the surface of elemental sulfur powder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.