The mechanism of biocidal action of nano titania on Escherichia coli and Staphylococcus aureus has been evaluated by various biochemical techniques like lipid peroxidation, hydrolysis of orthonitrophenol β-D-galactopyranoside, estimation of protein-amino acid and bacterial nucleic acids leakage into solution, in addition to morphology studies by electron microscopy (TEM and SEM) and K(+) ion leakage by inductively coupled plasma optical emission spectrometry. The active anatase phase of nano titania has been synthesized by sol-gel and pulverization techniques to obtain particle sizes averaging around 11 nm. The nano semiconductor with a bandgap of 3.2 eV responds well to the UV source to liberate reactive oxygen species (ROS). Gram negative bacteria easily succumb to the ROS at a faster rate than gram-positive bacteria with an observable difference in the mode of attack. The use of analytical techniques revealed the release of peroxidized lipid (26 nmol mL(-1) ) and protein content (370 μg mL(-1)) with a K(+) ion concentration of 22 000 ppb on complete destruction of E. coli.
The catalytic activity of these materials was investigated in the hydrogenation of α,β-unsaturated aldehydes and reduction of aromatic nitro compounds using different hydrogen sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.