The generation of electric voltage by placing a conductor in a temperature gradient is called the Seebeck effect. Its efficiency is represented by the Seebeck coefficient, S, which is defined as the ratio of the generated electric voltage to the temperature difference, and is determined by the scattering rate and the density of the conduction electrons. The effect can be exploited, for example, in thermal electric-power generators and for temperature sensing, by connecting two conductors with different Seebeck coefficients, a device called a thermocouple. Here we report the observation of the thermal generation of driving power, or voltage, for electron spin: the spin Seebeck effect. Using a recently developed spin-detection technique that involves the spin Hall effect, we measure the spin voltage generated from a temperature gradient in a metallic magnet. This thermally induced spin voltage persists even at distances far from the sample ends, and spins can be extracted from every position on the magnet simply by attaching a metal. The spin Seebeck effect observed here is directly applicable to the production of spin-voltage generators, which are crucial for driving spintronic devices. The spin Seebeck effect allows us to pass a pure spin current, a flow of electron spins without electric currents, over a long distance. These innovative capabilities will invigorate spintronics research.
Thermoelectric generation is an essential function in future energy-saving technologies. However, it has so far been an exclusive feature of electric conductors, a situation which limits its application; conduction electrons are often problematic in the thermal design of devices. Here we report electric voltage generation from heat flowing in an insulator. We reveal that, despite the absence of conduction electrons, the magnetic insulator LaY(2)Fe(5)O(12) can convert a heat flow into a spin voltage. Attached Pt films can then transform this spin voltage into an electric voltage as a result of the inverse spin Hall effect. The experimental results require us to introduce a thermally activated interface spin exchange between LaY(2)Fe(5)O(12) and Pt. Our findings extend the range of potential materials for thermoelectric applications and provide a crucial piece of information for understanding the physics of the spin Seebeck effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.