This article presents the modeling and development of a DC-DC converter with Partial Swarm Optimization with Distinctive Feed Forward Propagation (PSO-DFFP) controller for hybrid power systems, including photovoltaic panels. The transient and dynamic analysis of the proposed controller has been presented. The PSO-DFFP controller has been designed to improve the operating efficiency and reduces the input converter current ripple. The ANFIS and PSO DFFP controllers are developed, and the performance of the system is compared. The proposed system reduces the switching losses and voltage drops in switching modes. The proposed system is demonstrated and developed with a 200W, 100kHz model. From the experimental results, it can be exposed that the proposed system is acceptable for PV applications.
The modeling and development of the boost DC to DC converter with Partial Swarm Optimization with Distinctive Feed Forward Propagation (PSO-DFFP) controller for hybrid power systems including solar panels. The static and dynamic investigation of the developed PSO DEEP controller is presented. The PSO-DFFP controller has been designed to improve the operating efficiency and reduces the input converter current ripple. The PSO DFFP controller is developed and performance is compared with ANFIS and FLC. The developed system reduces the switching losses and voltage drops in switching modes. The designed system is demonstrated and developed with 200W, 100kHz model. The investigation results is exposed that the developed PSO DEEP system is an acceptable for SOLAR applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.