The two-envelope problem (or exchange problem) is one of maximizing the payoff in choosing between two values, given an observation of only one. This paradigm is of interest in a range of fields from engineering to mathematical finance, as it is now known that the payoff can be increased by exploiting a form of information asymmetry. Here, we consider a version of the 'two-envelope game' where the envelopes' contents are governed by a continuous positive random variable. While the optimal switching strategy is known and deterministic once an envelope has been opened, it is not necessarily optimal when the content's distribution is unknown. A useful alternative in this case may be to use a switching strategy that depends randomly on the observed value in the opened envelope. This approach can lead to a gain when compared with never switching. Here, we quantify the gain owing to such conditional randomized switching when the random variable has a generalized negative exponential distribution, and compare this to the optimal switching strategy. We also show that a randomized strategy may be advantageous when the distribution of the envelope's contents is unknown, since it can always lead to a gain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.