Betacyanins and betaxanthins were characterized and determined in an intensely pigmented red-colored callus culture of Celosia cristata L. (Amaranthaceae). A new malonyl derivative, 6'- O-malonyl-amaranthin (celoscristatin) was isolated and identified by spectroscopic and mass spectrometric techniques. Its stereoisomer, 4'- O-malonyl-amaranthin (celoscristatin acyl-migrated), as well as its 15 R diastereomer were also detected in the callus as a result of the malonyl group migration in celoscristatin/isoceloscristatin, respectively. Amaranthin occurs in the callus as the major betacyanin, followed by celoscristatin, betanin, phyllocactin, and other minor betacyanins. The effect of different carbon sources on the growth rates of the Celosia callus as well as on betalains profiles in the callus cultures was studied. High dopamine content in the callus culture was determined and compared with the content in C. cristata inflorescences. The dopamine-based betalain (miraxanthin V) was detected as the main betaxanthin in the callus, however, at a concentration level much lower than that of the identified betacyanins. The studied callus culture of C. cristata can accumulate betalains in amounts which approach the quantities produced by most known high-yielding plant species.
Plants are sessile organisms that have a remarkable developmental plasticity, which ensures their optimal adaptation to environmental stresses. Plant cell totipotency is an extreme example of such plasticity, whereby somatic cells have the potential to form plants via direct shoot organogenesis or somatic embryogenesis in response to various exogenous and/or endogenous signals. Protoplasts provide one of the most suitable systems for investigating molecular mechanisms of totipotency, because they are effectively single cell populations. In this review, we consider the current state of knowledge of the mechanisms that induce cell proliferation from individual, differentiated somatic plant cells. We highlight initial explant metabolic status, ploidy level and isolation procedure as determinants of successful cell reprogramming. We also discuss the importance of auxin signalling and its interaction with stress-regulated pathways in governing cell cycle induction and further stages of plant cell totipotency.
In vitro production of the meroterpene bakuchiol by Psoralea drupacea Bge (Fabaceae) has been studied using aseptically-grown plants, callus cultures of different origin, cell suspensions and transgenic hairy root cultures. The effect of phytohormones and methyl jasmonate on bakuchiol production was also investigated. Bakuchiol was not detected in cell suspensions or hairy root preparations of P. drupacea. In contrast, aerial parts of P. drupacea grown in vitro were found to accumulate up to 11% dry weight of bakuchiol and can therefore be regarded as a potentially useful source of this antimicrobial compound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.