Ultra low carbon steel samples were near plane strain deformed at different strains, strain rates and temperatures. Density of grain interior strain localizations in γ (ND//<111>) and θ (ND//<100>) fibres were evaluated against micro-stress estimates through X-ray line profile measurements. The patterns were remarkably different between the fibres. The increase in strain localizations were associated with increased dislocation density. This effect was more pronounced in γ -fibre. In θ -fibre, however, the peaks were increasingly more asymmetric and dislocation substructures were stipulated to have lesser recovery. Discrete dislocation dynamics simulations for single crystal pure iron also brought in different behavior for γ and θ fibres: increase in dislocation density in the former was estimated to be ~5 times more. A combination of textural softening and large/positive increase in dislocation density appears to justify the preference for strain localizations in γ -fibre.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.