The purpose of this research work was to appraise extent of heavy metals in sediment and the degree to which its quality tainted seasonally and spatially in river Cauvery. In this study, heavy metals such as Fe, Zn, Ni, Mn, Pb, Cu, Co, Cd and Cr were analysed in sediments. Results were compared with sediment quality guidelines from various derived criteria. Twenty-five sampling points were selected based on geographical proximity of agricultural fields and industrial discharges; river-tributary confluence points; settlements located along the river bank; ritual and recreational activities. Sampling was done for the period of 3 years (2007 to 2009). Digestion of the samples was done by microwave-assisted digestion technique. Analysis was carried out using flame furnace atomic absorption spectrophotometer, and results are expressed in micrograms per gram. The mean concentration of Fe (11144 μg/g) followed by Mn (1763.3 μg/g), Zn (93.1 μg/g), Cr (389 μg/g), Ni (27.7 μg/g), Cu (11.2 μg/g), Pb (4.3 μg/g), Co (1.9 μg/g) and Cd (1.3 μg/g) remained within the levels of sediment quality guidelines. Multivariate statistical techniques such as principal component analysis and cluster analysis (CA) were employed to better comprehend the controlling factors of sediment quality and spatial homogeneity among the stations. The sediment geo-accumulation index (I(geo)) showed maximum value of Cd (2.69) and least value of Mn (-1.44). The geo-accumulation class (I(geo) class) was in the sequence as follows: Cd>Zn>Pb>Cr>Cu>Co>Ni>Fe>Mn. Negative total geo-accumulation indices (I(tot)) revealed that mean concentration of heavy metals in the river bed sediment are lower than their respective shale values. The statistical analysis of inter-metallic relationship revealed the high degree of correlation among the metals indicated their identical behaviour during transport. This study concludes that insignificant geo-accumulation with metals except Cd (moderate contamination), Pb and Zn (slight contamination) principally in downstream stretch may perhaps deteriorate the sediment quality due to intensification anthropogenic influences. It also proves that extent of existing metal concentrations in sediments of river Cauvery in Karnataka not exceeded the toxic limit, and there is no peril to the aquatic life.
The study of heavy metal distribution in coastal surface sediments is an important component in understanding the exogenic cycling as well as in assessing the effect of anthropogenic influences on the marine ecosystem. In this study, surface sediment samples were collected from five different traverses along the innershelf of Bay of Bengal, off Chennai, India during pre- and post-monsoon seasons. The results of Spearmen correlation matrix, factor and cluster analysis, enrichment and contamination factor analysis, and geoaccumulation index of the heavy metals analyzed in the collected surface sediment were discussed. The level of both enrichment and contamination factor are shown in following order Cd > Cu > Cr > Ni > Pb > Co > Zn > Mn > Fe > Hg. The geoaccumulation index suggests that Cd and Cu are strongly to extremely pollute the sediments in both seasons. The results strongly indict anthropogenic sources for moderate input of Cd and Cu in to the innershelf of Chennai coast.
Bricks are very essential materials and major contributor in construction industry and it helps to build walls, foundation and road pavements. This paper presents detailed review of various types of bricks used in constructions such as burnt clay bricks, concrete bricks, fly ash clay bricks, sand lime bricks and engineering bricks. This paper also provides valuable information in bricks experimental works such as compressive strength, water absorption, Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD) analysis. Future progress and scope in bricks research are also discussed by providing some valuable future recommendation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.